硬核,这年头机器人都开始自学“倒车入库”了

简介: 硬核,这年头机器人都开始自学“倒车入库”了

目录

0 前言

本文基于差速轮式机器人模型做一个运动学应用,即控制机器人两轮的速度差改变其运动轨迹,使机器人完成一个倒车入库的动作。


image.png

仿真效果动图如下所示,看完本文相信你也可以做到!(文末有实际机器人运行效果图!)

1ff5e307609f44aaba912249a5bb0c81.png

1 什么是差速轮式机器人?

差速轮式机器人轮式机器人的一种,如下图所示。其特点是:两轮只有绕轴的旋转运动,而没有其他速度分量,因此这种机器人不能横向运动,想象家里的扫地机,路上开的汽车,他们都是差速结构,因此都不能“横着开”!什么样的机器人可以横着开?这个需要装配麦克纳姆轮,以后有机会再说。


image.png

2 差速轮式机器人的运动学方程

差速轮式机器人的运动学方程如下:

p ˙ = [ x ˙ y ˙ θ ˙ ] = [ cos ⁡ θ 0 sin ⁡ θ 0 0 1 ] [ v ω ] = S ( q ) u \boldsymbol{\dot{p}}=\left[

x˙y˙θ˙

x˙y˙θ˙

\right] =\left[

cosθsinθ0001

cos⁡θ0sin⁡θ001

\right] \left[

\right] =S\left( \boldsymbol{q} \right) \boldsymbol{u}

p

˙


=


 

x

˙

y

˙


θ

˙


 


=


 

cosθ

sinθ

0


 

0

0

1


 


[

v

ω


]=S(q)u


本文不推导晦涩的公式,这里写出来只是为了编程。

3 开始编程实现

3.1 机器人轨迹控制

首先,我们要确定两个位置,一个是车位位置ref,一个是车的当前位置p

% 车位
xRef = ref(1);
yRef = ref(2);
thetaRef = ref(3);
% 车
x = p(1);
y = p(2);
theta = p(3);

接着,我们要计算二者的误差

% 误差
xErr = cos(theta) * (xRef - x) + sin(theta) * (yRef - y);
yErr = -sin(theta) * (xRef - x) + cos(theta) * (yRef - y);
thetaErr = thetaRef - theta;

然后我们期望把误差降低

% 参数
Kpx = 3
Kpt = 3
% 轮子的线速度和角速度
v = Kpx * sqrt(xErr^2 + yErr^2);
w = Kpt * thetaErr;

接触过控制理论的同学一定能看出这就是个P反馈控制器。接着把这个增量反馈出去

dpdt = [v*cos(theta); v*sin(theta); w];

然后把这个函数封装成ode45的被调函数,让Matlab帮我们迭代计算即可。

3.2 画车位和车

车位很简单,就是三条直线

annotation('line', [0.53,0.53], [0.35,0.5], 'Color','k');
annotation('line', [0.63,0.63], [0.35,0.5], 'Color','k');
annotation('line', [0.53,0.63], [0.35,0.35], 'Color','k');

车可以按喜好画成各种样子,本文用箭头表示车的方向。

arrow = quiver(x, y, endPt(1) - x, endPt(2) - y, ...
       'MaxHeadSize',5.5,'AutoScaleFactor',1,'AutoScale','off', 'LineWidth', 1.5, 'color', color, ...
       'Marker', 'o', 'MarkerSize', 4, 'MarkerFaceColor',color);

效果如下


image.png

加点难度,把车位斜过来,也表现的很好!


image.png

3.3 制作动图

接着看看如何制作Matlab演示动画,下面是完整代码

figure(1)
stableProcess = VideoWriter('video/stableProcess.avi');
open(stableProcess);
movie = moviein(t);
% 画车位
annotation('line', [0.5,0.5], [0.2,0.3], 'Color','k');
annotation('line', [0.63,0.63], [0.2,0.3], 'Color','k');
annotation('line', [0.5,0.63], [0.2,0.2], 'Color','k');
% 画目标位置
plotPose(refPos);
grid on
hold on
% 画初始位置
handler = plotPose(initPos);
for i=1:length(t)
    delete(handler);
    handler = plotPose(actualPos(i,:));
    plot(actualPos(i,1), actualPos(i,2), 'Marker', '.', 'color', [0,0.5,0]);
    movie(:, i) = getframe;
    writeVideo(stableProcess, movie(:, i));
end
hold off
close(stableProcess);

4 真车实战

因为限制动图大小为5M内,下面的实例抽调了大部分帧。

image.png

🔥 更多精彩专栏

目录
相关文章
|
机器学习/深度学习 人工智能 自然语言处理
谷歌机器人「吃了」语言大模型后,会自学和思考了
谷歌机器人「吃了」语言大模型后,会自学和思考了
276 0
|
7月前
|
传感器 人工智能 监控
智能耕耘机器人
智能耕耘机器人
145 3
|
22天前
|
人工智能 自然语言处理 算法
具身智能高校实训解决方案 ----从AI大模型+机器人到通用具身智能
在具身智能的发展历程中,AI 大模型的出现成为了关键的推动力量。高校作为培养未来科技人才的摇篮,需要紧跟这一前沿趋势,开展具身智能实训课程。通过将 AI 大模型与具备 3D 视觉的机器人相结合,为学生搭建一个实践平台。
181 64
|
3天前
|
人工智能 自然语言处理 机器人
机器人迈向ChatGPT时刻!清华团队首次发现具身智能Scaling Laws
清华大学研究团队在机器人操作领域发现了数据规模定律,通过大规模数据训练,机器人策略的泛化性能显著提升。研究揭示了环境和对象多样性的重要性,提出了高效的數據收集策略,使机器人在新环境中成功率达到约90%。这一发现有望推动机器人技术的发展,实现更广泛的应用。
44 26
|
1月前
|
算法 机器人 语音技术
由通义千问驱动的人形机器人具身智能Multi-Agent系统
申昊科技人形机器人小昊,集成通义千问多模态大模型的具身智能系统,旨在讲解销售、迎宾表演等场景。机器人通过语音、动作等方式与用户互动,利用云端大语言模型处理自然语言,结合视觉、听觉等多模态感知技术,实现流畅的人机对话、目标追踪、展厅讲解等功能。
198 3
由通义千问驱动的人形机器人具身智能Multi-Agent系统
|
25天前
|
自然语言处理 算法 机器人
智能电话销售机器人源码搭建部署系统电话机器人源码
智能电话销售机器人源码搭建部署系统电话机器人源码
27 4
|
1月前
|
机器学习/深度学习 传感器 算法
智能机器人在工业自动化中的应用与前景###
本文探讨了智能机器人在工业自动化领域的最新应用,包括其在制造业中的集成、操作灵活性和成本效益等方面的优势。通过分析当前技术趋势和案例研究,预测了智能机器人未来的发展方向及其对工业生产模式的潜在影响。 ###
123 9
|
28天前
|
机器学习/深度学习 人工智能 运维
电话机器人源码-智能ai系统-freeswitch-smartivr呼叫中心-crm
电话机器人源码-智能ai系统-freeswitch-smartivr呼叫中心-crm
47 0
|
1月前
|
机器人 人机交互 语音技术
智能电销机器人源码部署安装好后怎么运行
销售打电销,其中90%电销都是无效的,都是不接,不要等被浪费了这些的精力,都属于忙于筛选意向客户,大量的人工时间都耗费在此了。那么,有这种新型的科技产品,能为你替代这些基本的工作,能为你提升10倍的电销效果。人们都在关心智能语音客服机器人如何高效率工作的问题,今天就为大家简单的介绍下:1、智能筛选系统:电销机器人目前已经达到一个真人式的专家级的销售沟通水平,可以跟客户沟通,筛选意向,记录语音和文字通话记录,快速帮助电销企业筛选意向客户,大大的节约了筛选时间成本和人工成本。2、高速运转:在工作效率上,人工电销员,肯定跟不上智能语音机器人,机器人自动拨出电话,跟客户交谈。电话机
95 0
|
2月前
|
人工智能 搜索推荐 机器人
挑战未来职场:亲手打造你的AI面试官——基于Agents的模拟面试机器人究竟有多智能?
【10月更文挑战第7天】基于Agent技术,本项目构建了一个AI模拟面试机器人,旨在帮助求职者提升面试表现。通过Python、LangChain和Hugging Face的transformers库,实现了自动提问、即时反馈等功能,提供灵活、个性化的模拟面试体验。相比传统方法,AI模拟面试机器人不受时间和地点限制,能够实时提供反馈,帮助求职者更好地准备面试。
86 2