硬核,这年头机器人都开始自学“倒车入库”了

简介: 硬核,这年头机器人都开始自学“倒车入库”了

目录

0 前言

本文基于差速轮式机器人模型做一个运动学应用,即控制机器人两轮的速度差改变其运动轨迹,使机器人完成一个倒车入库的动作。


image.png

仿真效果动图如下所示,看完本文相信你也可以做到!(文末有实际机器人运行效果图!)

1ff5e307609f44aaba912249a5bb0c81.png

1 什么是差速轮式机器人?

差速轮式机器人轮式机器人的一种,如下图所示。其特点是:两轮只有绕轴的旋转运动,而没有其他速度分量,因此这种机器人不能横向运动,想象家里的扫地机,路上开的汽车,他们都是差速结构,因此都不能“横着开”!什么样的机器人可以横着开?这个需要装配麦克纳姆轮,以后有机会再说。


image.png

2 差速轮式机器人的运动学方程

差速轮式机器人的运动学方程如下:

p ˙ = [ x ˙ y ˙ θ ˙ ] = [ cos ⁡ θ 0 sin ⁡ θ 0 0 1 ] [ v ω ] = S ( q ) u \boldsymbol{\dot{p}}=\left[

x˙y˙θ˙

x˙y˙θ˙

\right] =\left[

cosθsinθ0001

cos⁡θ0sin⁡θ001

\right] \left[

\right] =S\left( \boldsymbol{q} \right) \boldsymbol{u}

p

˙


=


 

x

˙

y

˙


θ

˙


 


=


 

cosθ

sinθ

0


 

0

0

1


 


[

v

ω


]=S(q)u


本文不推导晦涩的公式,这里写出来只是为了编程。

3 开始编程实现

3.1 机器人轨迹控制

首先,我们要确定两个位置,一个是车位位置ref,一个是车的当前位置p

% 车位
xRef = ref(1);
yRef = ref(2);
thetaRef = ref(3);
% 车
x = p(1);
y = p(2);
theta = p(3);

接着,我们要计算二者的误差

% 误差
xErr = cos(theta) * (xRef - x) + sin(theta) * (yRef - y);
yErr = -sin(theta) * (xRef - x) + cos(theta) * (yRef - y);
thetaErr = thetaRef - theta;

然后我们期望把误差降低

% 参数
Kpx = 3
Kpt = 3
% 轮子的线速度和角速度
v = Kpx * sqrt(xErr^2 + yErr^2);
w = Kpt * thetaErr;

接触过控制理论的同学一定能看出这就是个P反馈控制器。接着把这个增量反馈出去

dpdt = [v*cos(theta); v*sin(theta); w];

然后把这个函数封装成ode45的被调函数,让Matlab帮我们迭代计算即可。

3.2 画车位和车

车位很简单,就是三条直线

annotation('line', [0.53,0.53], [0.35,0.5], 'Color','k');
annotation('line', [0.63,0.63], [0.35,0.5], 'Color','k');
annotation('line', [0.53,0.63], [0.35,0.35], 'Color','k');

车可以按喜好画成各种样子,本文用箭头表示车的方向。

arrow = quiver(x, y, endPt(1) - x, endPt(2) - y, ...
       'MaxHeadSize',5.5,'AutoScaleFactor',1,'AutoScale','off', 'LineWidth', 1.5, 'color', color, ...
       'Marker', 'o', 'MarkerSize', 4, 'MarkerFaceColor',color);

效果如下


image.png

加点难度,把车位斜过来,也表现的很好!


image.png

3.3 制作动图

接着看看如何制作Matlab演示动画,下面是完整代码

figure(1)
stableProcess = VideoWriter('video/stableProcess.avi');
open(stableProcess);
movie = moviein(t);
% 画车位
annotation('line', [0.5,0.5], [0.2,0.3], 'Color','k');
annotation('line', [0.63,0.63], [0.2,0.3], 'Color','k');
annotation('line', [0.5,0.63], [0.2,0.2], 'Color','k');
% 画目标位置
plotPose(refPos);
grid on
hold on
% 画初始位置
handler = plotPose(initPos);
for i=1:length(t)
    delete(handler);
    handler = plotPose(actualPos(i,:));
    plot(actualPos(i,1), actualPos(i,2), 'Marker', '.', 'color', [0,0.5,0]);
    movie(:, i) = getframe;
    writeVideo(stableProcess, movie(:, i));
end
hold off
close(stableProcess);

4 真车实战

因为限制动图大小为5M内,下面的实例抽调了大部分帧。

image.png

🔥 更多精彩专栏

目录
相关文章
|
机器学习/深度学习 人工智能 自然语言处理
谷歌机器人「吃了」语言大模型后,会自学和思考了
谷歌机器人「吃了」语言大模型后,会自学和思考了
262 0
|
5月前
|
传感器 人工智能 监控
智能耕耘机器人
智能耕耘机器人
111 3
|
2月前
|
人工智能 算法 机器人
机器人版的斯坦福小镇来了,专为具身智能研究打造
【8月更文挑战第12天】《GRUtopia:城市级具身智能仿真平台》新论文发布,介绍了一款由上海AI实验室主导的大规模3D城市模拟环境——GRUtopia。此平台包含十万级互动场景与大型语言模型驱动的NPC系统,旨在解决具身智能研究中的数据稀缺问题并提供全面的评估工具,为机器人技术的进步搭建重要桥梁。https://arxiv.org/pdf/2407.10943
177 60
|
5月前
|
自然语言处理 机器人 Go
【飞书ChatGPT机器人】飞书接入ChatGPT,打造智能问答助手
【飞书ChatGPT机器人】飞书接入ChatGPT,打造智能问答助手
300 0
|
2月前
|
机器人 C# 人工智能
智能升级:WPF与人工智能的跨界合作——手把手教你集成聊天机器人,打造互动新体验与个性化服务
【8月更文挑战第31天】聊天机器人已成为现代应用的重要组成部分,提供即时响应、个性化服务及全天候支持。随着AI技术的发展,聊天机器人的功能日益强大,不仅能进行简单问答,还能实现复杂对话管理和情感分析。本文通过具体案例分析,展示了如何在WPF应用中集成聊天机器人,并通过示例代码详细说明其实现过程。使用Microsoft的Bot Framework可以轻松创建并配置聊天机器人,增强应用互动性和用户体验。首先,需在Bot Framework门户中创建机器人项目并编写逻辑。然后,在WPF应用中添加聊天界面,实现与机器人的交互。
42 0
|
2月前
|
机器人 TensorFlow 算法框架/工具
智能聊天机器人
【8月更文挑战第1天】智能聊天机器人。
78 2
|
2月前
|
人工智能 自然语言处理 安全
盘点国内:AI写作助手_ai智能问答机器人
AI写作助手是利用人工智能技术,特别是自然语言处理(NLP)技术,来辅助用户进行写作的工具。这类助手通过分析大量文本数据,能够理解语言的结构和含义,从而生成、编辑或优化文本内容。AI写作助手通常具有自动纠错、语法检查、内容生成和风格调整等功能,帮助用户提高写作效率和质量。
|
2月前
|
自然语言处理 监控 搜索推荐
使用 LangChain 创建高度互动和智能的聊天机器人
【8月更文第3天】随着自然语言处理(NLP)技术的进步,聊天机器人已成为企业和用户之间互动的重要渠道。LangChain 是一个强大的框架,旨在简化构建复杂语言模型应用程序的过程。本文将详细介绍如何使用 LangChain 框架创建高度互动和智能的聊天机器人,包括选择合适的语言模型、设计对话流程、上下文管理以及集成外部API和服务等内容。
97 0
|
5月前
|
传感器 人工智能 自然语言处理
智能咖啡厅助手:人形机器人 +融合大模型,行为驱动的智能咖啡厅机器人
智能咖啡厅助手:人形机器人 +融合大模型,行为驱动的智能咖啡厅机器人
智能咖啡厅助手:人形机器人 +融合大模型,行为驱动的智能咖啡厅机器人

热门文章

最新文章

下一篇
无影云桌面