CVPR2022 前沿研究成果解读:基于生成对抗网络的深度感知人脸重演算法

简介: 《基于生成对抗网络的深度感知人脸重演算法 》(Depth-Aware Generative Adversarial Network for Talking Head Video Generation)

凭借在人脸生成领域的扎实积累和前沿创新,阿里云视频云与香港科技大学合作的最新研究成果《基于生成对抗网络的深度感知人脸重演算法 》(Depth-Aware Generative Adversarial Network for Talking Head Video Generation)被 CVPR2022 接收。本文为最新研究成果解读。


论文题目:《Depth-Aware Generative Adversarial Network for Talking Head Video Generation》
arxiv链接:https://arxiv.org/abs/2203.06605


人脸重演算法将使视频编解码有新突破?

近年来随着视频直播的大火,越来越多的人开始关注视频云领域。而视频传输的低延迟,高画质,一直是难以平衡的两个点。当前直播延时最低可以降到 400ms 以内,但是在视频会议等各场景的需求不断增加的情况下,比如远程 PPT 演示,我们对画质和延迟的平衡有着更高的要求。而突破直播延迟的关键是编解码技术的提升,人脸重演算法与编解码技术的结合,在视频会议场景的应用中将使带宽需求大幅减少,而获得更具身临其境的体验,这是迈向超低延时优画质视频会议非常重要的一步。


人脸重演(face reenactment/talking head)算法是指,利用一段视频来驱动一张图像,使图像中的人脸能够模仿视频中人物的面部姿态、表情和动作,实现静态图像视频化的效果。

1.5mb.gif

图 1


人脸重演发展现状

目前的人脸重演方法严重依赖于从输入图像中学习到的 2D 表征。然而,我们认为稠密的 3D 几何信息(例如:像素级深度图)对于人脸重演非常重要,因为它可以帮助我们生成更准确的 3D 人脸结构,并将噪声和复杂背景与人脸区分开来。不过,稠密的视频 3D 标注代价高昂。


研究动机&创新点  

在本文中,我们介绍了一种自监督的 3D 几何学习方法,可以在不需要任何 3D 标注的情况下,从视频中估计出头部深度(depth maps)。我们进一步利用深度图来辅助检测人脸关键点,从而捕捉头部的运动。此外,深度图还用于学习一种 3D 感知的跨模态注意力(3D-aware cross-model attention),以指导运动场(motion field)的学习和特征的形变。

2.png

图 2


图 2 展示了本文提出的 DA-GAN 的 pipeline,它主要包含三部分:

(1)深度估计网络image.png,我们通过自监督的方式估计稠密的人脸深度图;

(2)关键点检测网络image.png,我们将由深度图表征的 3D 几何特征与由 RGB 图的外观特征进行拼接,以预测更为准确的人脸关键点;


(3)人脸合成网络,它又可以分为一个特征形变模块和一个跨模态注意力模块。


特征形变模块将输入的稀疏关键点转化为稀疏运动场(sparse motion field),随后学习得到稠密运动场(dense motion field),并用其对图像特征进行扭曲(warping)。


跨模态注意力模块利用深度特征学习得到注意力图(attention maps),以捕捉更多动作细节并修正人脸结构。两个模块的结构可见图 3 和图 4。


3.png


图 3


4.png图 4


实验结果

定量实验

我们在 VoxCeleb1[1] 和 CelebV[2] 数据集上进行了实验。


我们使用 structured similarity (SSIM) 和 peak signal-to-noise ratio (PSNR) 来评估结果帧和驱动帧的相似度;


使用 average keypoint distance (AKD) 和 average euclidean distance (AED)[3] 来评估关键点的准确性,使用 CSIM[4] 来评估身份保持;
使用 PRMSE 来评估头姿保持,使用 AUCON 来评估姿态保持。


定量对比

5.png表 1


6.png表 2


7.png表 3


表 1 和表 2 是 DA-GAN 与主流人脸重演方法在 VoxCeleb1 数据集上的定量对比,表 3 是 DA-GAN 与主流人脸重演方法在 CelebV 数据集上的定量对比。


定性对比

图 5 是 GA-GAN 与主流人脸重演方法的定性对比。实验表明,本文提出的 DA-GAN 在各项指标以及生成效果上上均优于其它算法。

8.png图 5


消融实验(Ablation study)

图 6 是 ablation study 的结果,可以看到,自监督深度估计和跨模态注意力模块都显著提升了合成人脸的细节和微表情。


9.png图 6


研究总结

通过以上的的结果,可以看出人脸重演算法可以实现更为精细的人脸细节和微表情合成。在视频会议场景中,用 talking head 的方法,在通信过程中可以只传输关键点坐标,而不需要传输每帧图像,在接收端可以通过输入关键点恢复每一帧的图像,大幅降低带宽需求,从而获得画质优良的低延时视频会议体验。


「视频云技术」你最值得关注的音视频技术公众号,每周推送来自阿里云一线的实践技术文章,在这里与音视频领域一流工程师交流切磋。公众号后台回复【技术】可加入阿里云视频云产品技术交流群,和业内大咖一起探讨音视频技术,获取更多行业最新信息。

相关文章
|
3月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
342 0
|
3月前
|
存储 机器学习/深度学习 编解码
双选择性信道下正交啁啾分复用(OCDM)的低复杂度均衡算法研究——论文阅读
本文提出统一相位正交啁啾分复用(UP-OCDM)方案,利用循环矩阵特性设计两种低复杂度均衡算法:基于带状近似的LDL^H分解和基于BEM的迭代LSQR,将复杂度由$O(N^3)$降至$O(NQ^2)$或$O(iNM\log N)$,在双选择性信道下显著提升高频谱效率与抗多普勒性能。
231 0
双选择性信道下正交啁啾分复用(OCDM)的低复杂度均衡算法研究——论文阅读
|
3月前
|
存储 监控 算法
基于 Go 语言跳表结构的局域网控制桌面软件进程管理算法研究
针对企业局域网控制桌面软件对海量进程实时监控的需求,本文提出基于跳表的高效管理方案。通过多级索引实现O(log n)的查询、插入与删除性能,结合Go语言实现并发安全的跳表结构,显著提升进程状态处理效率,适用于千级进程的毫秒级响应场景。
176 15
|
3月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
209 8
|
3月前
|
存储 机器学习/深度学习 监控
网络管理监控软件的 C# 区间树性能阈值查询算法
针对网络管理监控软件的高效区间查询需求,本文提出基于区间树的优化方案。传统线性遍历效率低,10万条数据查询超800ms,难以满足实时性要求。区间树以平衡二叉搜索树结构,结合节点最大值剪枝策略,将查询复杂度从O(N)降至O(logN+K),显著提升性能。通过C#实现,支持按指标类型分组建树、增量插入与多维度联合查询,在10万记录下查询耗时仅约2.8ms,内存占用降低35%。测试表明,该方案有效解决高负载场景下的响应延迟问题,助力管理员快速定位异常设备,提升运维效率与系统稳定性。
241 4
|
3月前
|
机器学习/深度学习 算法
采用蚁群算法对BP神经网络进行优化
使用蚁群算法来优化BP神经网络的权重和偏置,克服传统BP算法容易陷入局部极小值、收敛速度慢、对初始权重敏感等问题。
354 5
|
4月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
280 2
|
4月前
|
canal 算法 vr&ar
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
151 1
|
4月前
|
运维 监控 JavaScript
基于 Node.js 图结构的局域网设备拓扑分析算法在局域网内监控软件中的应用研究
本文探讨图结构在局域网监控系统中的应用,通过Node.js实现设备拓扑建模、路径分析与故障定位,提升网络可视化、可追溯性与运维效率,结合模拟实验验证其高效性与准确性。
282 3
|
3月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
175 0