一篇解栈和队列(0基础看)(C语言)《数据结构与算法》(一)

简介: 一篇解栈和队列(0基础看)(C语言)《数据结构与算法》(一)

谁都不能阻挡你成为更优秀的人。  


1. 栈的表示和实现


1.1. 栈的概念及结构

栈 :一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。 进行数据插入和删除 操作的一端称为栈顶,另一端称为栈底。 栈中的数据元素遵守后进先出 LIFO ( Last In First Out ) 的原则。

压栈 :栈的插入操作叫做进栈 / 压栈 / 入栈, 入数据在栈顶 。

出栈 :栈的删除操作叫做出栈。 出数据也在栈顶 。


image.png


image.png


1.2. 栈的实现


栈的实现一般可以使用数组或者链表实现,相对而言数组的结构实现更优一些。因为数组在尾上插入数据的代价比较小(O(1)),而链表是O(N)。


image.png


1.3. 效果展示图


image.png



注意:队列没有打印函数的,只能像图中这样,判断是否为空,然后取栈顶数据(取栈顶数据是不用减数据个数的),再出一个数据(在这里才减数据个数)。


1.3.01 栈要实现的接口


image.png


image.png


image.png


image.png


image.png


image.png


1.4. 栈的源代码


test.c

#define _CRT_SECURE_NO_WARNINGS 1
#include"Stack.h"
#include"Queue.h"
void testStack()
{
  ST st;
  StackInit(&st);
  StackPush(&st, 1);
  StackPush(&st, 2);
  StackPush(&st, 3);
  StackPush(&st, 4);
  StackPush(&st, 5);
  //要注意 没有打印这个函数,不像前面的一样
  //栈是只能栈顶入和出,所以只能这样写
  while (!StackEmpty(&st))
  {
    printf("%d ", StackTop(&st));
    StackPop(&st);
  }
  StackDistory(&st);
}
void testQueue()
{
  Queue q;
  QueueInit(&q);
  QueuePush(&q, 1);
  QueuePush(&q, 2);
  printf("%d ", QueueFront(&q));
  QueuePop(&q);
  QueuePush(&q, 3);
  QueuePush(&q, 4);
  printf("%d ", QueueFront(&q));
  QueuePop(&q);
  QueuePush(&q, 5);
  while (!QueueEmpty(&q))
  {
    printf("%d ",QueueFront(&q));
    QueuePop(&q);
  }
  QueueDestory(&q);
}
int main()
{
  testStack();
  //testQueue();
  return 0;
}


Stack.h

#pragma once
#include<stdio.h>
#include<malloc.h>
#include<stdbool.h>
#include<assert.h>
#include<stdlib.h>
typedef int STDateType;
typedef struct Stack
{
  //动态数组存数据
  STDateType* a;
  //目前数据个数
  int top;
  //总容量
  int capacity;
}ST;
//进栈  出栈  初始化 销毁  取栈顶数据 多少个数据  判断 
//初始化
void StackInit(ST* ps);
//销毁
void StackDistory(ST* ps);
//入栈
void StackPush(ST* ps, STDateType x);
//出栈
void StackPop(ST* ps);
//取栈顶数据
STDateType StackTop(ST* ps);
//求多少个数据
int StackSize(ST* ps);
//求是不是为空
bool StackEmpty(ST* ps);


Stack.c


#define _CRT_SECURE_NO_WARNINGS 1
#include"Stack.h"
//初始化
void StackInit(ST* ps)
{
  assert(ps);
  ps->a = (STDateType*)malloc(sizeof(STDateType)*4);
  ps->capacity = 4;
  //这里是初始化的0,也就是说永远指向栈顶的下一个位置
  ps->top = 0;
}
//销毁
void StackDistory(ST* ps)
{
  assert(ps);
  free(ps->a);
  ps->a = NULL;
  ps->capacity = ps->top = 0;
}
//入栈
void StackPush(ST* ps, STDateType x)
{
  assert(ps);
  //满了增容
  if (ps->capacity == ps->top)
  {
    STDateType* newa = (STDateType*)realloc( ps->a, sizeof(STDateType) * ps->capacity * 2);
    if (newa == NULL)
    {
      printf("realloc fail\n");
      exit(-1);
    }
    else
    {
      ps->capacity *= 2;
      ps->a = newa;
    }
  }
  ps->a[ps->top] = x;
  ps->top++;
}
//出栈
void StackPop(ST* ps)
{
  assert(ps);
  //栈空了调用直接报错
  assert(ps->top > 0);
  ps->top--;
}
//取栈顶数据
STDateType StackTop(ST* ps)
{
  assert(ps);
  assert(ps->top > 0);
  return ps->a[ps->top-1];
}
//求多少个数据
int StackSize(ST* ps)
{
  assert(ps);
  return ps->top;
}
//求是不是为空
bool StackEmpty(ST* ps)
{
  assert(ps);
  return ps->top==0;
}



2. 队列的表示和实现


2.1 队列的概念及结构

队列 : 只 允许在 一端 进行 插入 数据操作,在 另一端 进行 删除 数据操作的特殊线性表,队列具有先进先出FIFO(First In First Out) 入队列:进行插入操作的一端称为 队尾 出队列:进行删除操作的一端称为队头。


image.png


2.2 队列的实现


队列也可以数组和链表的结构实现,使用链表的结构实现更优一些,因为如果使用数组的结构,出队列在数组头上出数据,效率会比较


image.png


2.4. 队列的效果示意图


image.png


image.png


image.png


image.png


image.png


image.png


image.png


image.png


image.png


2.6. 队列源代码


test.c

#define _CRT_SECURE_NO_WARNINGS 1
#include"Stack.h"
#include"Queue.h"
void testStack()
{
  ST st;
  StackInit(&st);
  StackPush(&st, 1);
  StackPush(&st, 2);
  StackPush(&st, 3);
  StackPush(&st, 4);
  StackPush(&st, 5);
  //要注意 没有打印这个函数,不像前面的一样
  //栈是只能栈顶入和出,所以只能这样写
  while (!StackEmpty(&st))
  {
    printf("%d ", StackTop(&st));
    StackPop(&st);
  }
  StackDistory(&st);
}
void testQueue()
{
  Queue q;
  QueueInit(&q);
  QueuePush(&q, 1);
  QueuePush(&q, 2);
  printf("%d ", QueueFront(&q));
  QueuePop(&q);
  QueuePush(&q, 3);
  QueuePush(&q, 4);
  printf("%d ", QueueFront(&q));
  QueuePop(&q);
  QueuePush(&q, 5);
  while (!QueueEmpty(&q))
  {
    printf("%d ",QueueFront(&q));
    QueuePop(&q);
  }
  QueueDestory(&q);
}
int main()
{
  //testStack();
  testQueue();
  return 0;
}

Queue.c

#pragma once
#include<stdio.h>
#include<stdbool.h>
#include<assert.h>
#include<malloc.h>
#include<stdlib.h>
typedef int QDateType;
typedef struct QueueNode 
{
  struct QueueNode* next;
  QDateType date;
}QNode;
typedef struct Queue
{
  QNode* head;
  QNode* tail;
}Queue;
//初始化
void QueueInit(Queue* pq);
//销毁
void QueueDestory(Queue* pq);
//插入
void QueuePush(Queue* pq, QDateType x);
//删除
void QueuePop(Queue* pq);
//得到头部数据
QDateType QueueFront(Queue* pq);
//得到尾部数据
QDateType QueueBack(Queue* pq);
//得到大小
int QueueSize(Queue* ps);
//判空
bool QueueEmpty(Queue* pq);


Queue.c

#define _CRT_SECURE_NO_WARNINGS 1
#include"Queue.h"
//初始化
void QueueInit(Queue* pq)
{
  assert(pq);
  pq->head = pq->tail = NULL;
}
//销毁
void QueueDestory(Queue* pq)
{
  assert(pq);
  QNode* cur = pq->head;
  while (cur)
  {
    QNode* next = cur->next;
    free(cur);
    cur = next;
  }
  pq->head = pq->tail = NULL;
}
//插入
void QueuePush(Queue* pq, QDateType x)
{
  assert(pq);
  QNode* newnode = (QNode*)malloc(sizeof(QNode));
  newnode->date = x;
  newnode->next = NULL;
  if (newnode == NULL)
  {
    printf("malloc fail\n");
    exit(-1);
  }
  if (pq->head == NULL)
  {
    pq->head = pq->tail = newnode;
  }
  else
  {
    pq->tail->next = newnode;
    pq->tail = newnode;
  }
}
//删除
void QueuePop(Queue* pq)
{
  assert(pq);
  assert(pq->head);
  //1个数据
  //多个
  if (pq->head->next == NULL)
  {
    //一个数据如果不分情况
    //free后tail是野指针再插入就会有问题
    free(pq->head);
    pq->head = pq->tail = NULL;
  }
  else
  {
    QNode* next = pq->head->next;
    free(pq->head);
    pq->head = next;
  }
}
//得到头部数据
QDateType QueueFront(Queue* pq)
{
  assert(pq->head);
  return pq->head->date;
}
//得到尾部数据
QDateType QueueBack(Queue* pq)
{
  assert(pq->head);
  return pq->tail->date;
}
//得到大小
int QueueSize(Queue* pq)
{
  assert(pq->head);
  int sz = 0;
  QNode* cur=pq->head;
  while (cur)
  {
    sz++;
    cur = cur->next;
  }
  return sz;
}
//判空
bool QueueEmpty(Queue* pq)
{
  assert(pq);
  return pq->head == NULL;
}


总结  

栈和队列其实相对于我们之前实现的单,双链表是更简单的,又或者说也就是之前的简单版,只是要注意打印是不同的,这是我们要根据他们的性质来写。当然,每写一个函数我们还是要注意各种特殊情况,一个数据,没有数据等。再最后提供一个小方法,再代码报错又不知道在哪里的时候,我们可以用一个test函数去把自己写的接口一个一个去测,然后调试。当然作者更喜欢在这之前用另一个,因为这样调试有点慢,就是直接去看之前写的接口的逻辑,跟着思路看每个接口的代码,这样会更简单更快,同时写代码或者调试的时候都可以画图来看,这是我们刚开数据结构的时候就提醒过大家的哈。


今天的内容就到这里了哈!!!

要是认为作者有一点帮助你的话!

就来一个点赞加关注吧!!!当然订阅是更是求之不得!

赠人玫瑰,手有余香=。=!

最后的最后感谢大家的观看!!!

你们的支持是作者写作的最大动力!!!

下期见哈!!!

相关文章
|
1月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
218 9
|
1月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
37 1
|
4天前
|
算法
【算法】栈
栈相关算法题,供参考,附有链接地址及板书
|
1月前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
55 5
|
1月前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。
|
1月前
|
存储 JavaScript 前端开发
执行上下文和执行栈
执行上下文是JavaScript运行代码时的环境,每个执行上下文都有自己的变量对象、作用域链和this值。执行栈用于管理函数调用,每当调用一个函数,就会在栈中添加一个新的执行上下文。
|
1月前
|
存储
系统调用处理程序在内核栈中保存了哪些上下文信息?
【10月更文挑战第29天】系统调用处理程序在内核栈中保存的这些上下文信息对于保证系统调用的正确执行和用户程序的正常恢复至关重要。通过准确地保存和恢复这些信息,操作系统能够实现用户模式和内核模式之间的无缝切换,为用户程序提供稳定、可靠的系统服务。
52 4
|
1月前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
|
算法
数据结构之购物车系统(链表和栈)
本文介绍了基于链表和栈的购物车系统的设计与实现。该系统通过命令行界面提供商品管理、购物车查看、结算等功能,支持用户便捷地管理购物清单。核心代码定义了商品、购物车商品节点和购物车的数据结构,并实现了添加、删除商品、查看购物车内容及结算等操作。算法分析显示,系统在处理小规模购物车时表现良好,但在大规模购物车操作下可能存在性能瓶颈。
50 0
|
5天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
119 80