Hey guys ,各位小伙伴们大家好,这里是程序员 cxuan,欢迎你收看我最新一期的文章。
这篇文章我们来聊一聊 HTTP 2.0,以及 HTTP 2.0 它在 HTTP 1.1 的基础上做了哪些改变,以及 HTTP 2.0 都有哪些特征,那么废话不多说,下面开始本篇文章。
哦对了,如果你没有看过笔者的 HTTP 1.1 系列的相关文章,建议你先阅读笔者的下面几篇文章,非常 nice,看完保准你有收获。
最初的 HTTP
HTTP 刚刚诞生之初只用于 web 端的内容获取,一般就是用于页面访问,那个时候的页面内容还不如现在这样丰富,交互场景也不是很多,也没有庞大繁杂的 CSS、JS ,页面加载速度非常快。但是随着 web 2.0 的出现以及更多的内容被展示、更精美的排版、更多的用户交互场景一起出现,导致页面的内容越来越大,使得页面加载速度越来越慢。
HTTP 的瓶颈
影响一个 HTTP 网络请求的因素主要有两个:带宽和延迟。
首先来说一下带宽,如果我们还停留在拨号上网阶段的话,带宽很容易出现瓶颈,因为单位时间内传输的数据量很小。但是现在随着光纤等通信技术的不断发展,10Mbps、100Mbps、甚至 1000 Mbps 进入了每个家庭,我们不用再担心带宽成为网络请求的瓶颈了。
那么剩下的就只剩下延迟了。
延迟主要有下面三个方面:
- 浏览器阻塞(HOL blocking):浏览器会因为一些原因阻塞请求。浏览器对于同一个域名,同时只能有 4 个连接(这个根据浏览器内核不同可能会有所差异),超过浏览器最大连接数限制,后续请求就会被阻塞。
- DNS 查询(DNS Lookup):浏览器需要知道目标服务器的 IP 才能建立连接。将域名解析为 IP 的这个系统就是 DNS。这个通常可以利用 DNS 缓存结果来达到减少这个时间的目的。
- 建立连接(Initial connection):HTTP 是基于 TCP 协议的,浏览器最快也要在第三次握手时才能捎带 HTTP 请求报文,达到真正的建立连接,但是这些连接无法复用会导致每次请求都经历三次握手和慢启动。三次握手在高延迟的场景下影响较明显,慢启动则对文件类大请求影响较大。
HTTP 1.0 有一个被抱怨最多的是连接无法复用,当每次有新的请求时都会重新经历一次三次握手和四次挥手过程,并且连接的建立和释放需要耗费大量的服务器资源,在请求少的页面还尚能应对,不过随着请求的不断增多,HTTP 1.0 越来越难顶。
不过,HTTP 1.0 协议头里可以设置 Connection:Keep-Alive。在 header 里设置 Keep-Alive 可以在一定时间内复用连接,具体复用时间的长短可以由服务器控制,一般在 15s 左右。到 HTTP 1.1 之后 Connection 的默认值就是Keep-Alive,如果要关闭连接复用需要显式的设置 Connection:Close。
HTTP 还有一个被抱怨最多的问题就是它的队头阻塞(head of blocking),队头阻塞问题会导致带宽无法充分利用,导致后续的请求被阻塞。
假如有五个请求被同时发出,如果第一个请求没有处理完成,就会导致后续的请求也无法得到处理,如下图所示
如果第一个请求没有被处理,那么 2 3 4 5 这四个请求会直接阻塞在客户端,等到请求 1 被处理完毕后,才能逐个发出。网络通畅的时候性能影响不大,不过一旦请求 1 因为某些原因没有抵达服务器,或者请求因为网络阻塞没有及时返回,影响的就是所有后续请求,导致后续请求无限阻塞下去,问题就变得比较严重了。
不过在 HTTP 1.1 中,也提出了**流水线(pipelining)**的设计,pipelining 就被用来解决队头阻塞的问题,如下图所示
虽然这种流水线的设计乍一看像是能够解决阻塞问题,因为右图中这三个请求没有等到响应到达后再进行发送,而是直接依次发送,但是实际上,并不是那么回事。
pipelining 并不是救世主,它也存在不少缺陷:
- 因为只有幂等的请求比如 GET、HEAD 才能使用 pipelining ,非幂等请求比如 POST 则不能使用,因为请求之间可能存在先后依赖关系。
- 其实队头阻塞问题并没有完全解决,因为服务器返回的响应还是要依次返回,也就是返回的请求时 FIFO - 先发先回。
- 绝大多数 HTTP 代理服务器不支持 pipelining。
- 和不支持 pipelining 的老服务器协商有问题。
正是因为有这么多的问题,各大浏览器厂商要么是根本就不支持 pipelining,要么就是默认关掉了 pipelining 机制,而且启用的条件十分苛刻。
SPDY
虽然 HTTP1.0 和 HTTP 1.1 存在这么多问题,业界也是想出了各种优化手段,但是这些手段怎么说呢,都是治标不治本,直到 2020 年 Google 提出了 SPDY
的方案,大家才开始从正面看待和解决老版本 HTTP 协议本身的问题,这也直接加速了 HTTP 2.0 的诞生。
我们先来聊一下 SPDY 是什么,它都有哪些特点?
认识 SPDY
SPDY 的目标在于解决 HTTP 的缺陷,即延迟和安全性。我们上面一直在讨论延迟,至于安全性,虽然我们上面没有具体聊,不过 HTTP 的明文传输确是个问题。如果以降低延迟为目标,应用层的 HTTP 和传输层的 TCP 都是都有调整的空间,不过 TCP 作为更底层协议存在已达数十年之久,其实现已深植全球的网络基础设施当中,如果要动必然伤经动骨,业界响应度必然不高,所以 SPDY 的手术刀对准的是 HTTP 。
- 降低延迟,客户端的单连接单请求,服务端的 FIFO 响应队列都是延迟的大头。
- HTTP 最初设计都是客户端发起请求,然后服务端进行响应,服务端无法主动发送内容到客户端。
- 压缩 HTTP header,HTTP 1.x 的 header 越来越膨胀,cookie 和 user agent 很容易让 header 的 size 增至1kb 大小甚至更多。而且由于 HTTP 的无状态特性,header 必须每次请求都重复携带,很浪费流量。
为了增加解决这些问题的可行性,聪明的 Google 一开始就避开了从传输层动手,而且打算利用开源社区的力量以提高扩散的力度,对于协议使用者来说,也只需要在请求的 header 里设置 user agent,然后在服务端做好支持即可,极大的降低了部署的难度。SPDY 的设计如下
可以看到,SPDY 位于 HTTP 之下,SSL 之上,这样可以轻松的兼容老版本的 HTTP 协议,SPDY 的功能分为基础功能和高级功能两部分,基础功能是默认启用的,高级功能需要手动启用。
SPDY 基础功能
- 多路复用(multiplexing),多路复用通过多个请求共用一个连接的方式,降低了 TCP 连接建立和释放的开销,同时提高了带宽的利用率。
- 请求优先级(request prioritization),多路复用带来的一个问题是,在共享连接的基础上会存在一些关键请求被阻塞,SPDY 允许给每个请求设置优先级,这样重要的请求就会优先得到响应。
- header 压缩,前面提到的 HTTP 1.x 的 header 很多时候都是重复而且多余的。选择合适的压缩算法可以减小包的大小和数量。SPDY 对 header 的压缩率可以达到 80% 以上。
SPDY 高级功能
- 服务端推送,HTTP 只能由客户端发送,服务器只能被动发送响应。不过在开启服务端推送后,服务端通过 X-Associated-Content header 会告知服务器会有新的内容被推送过来,
- 服务端暗示,和服务端推送所不同的是,服务端暗示不会推送内容,只是告诉客户端有新的内容产生,,内容的下载还是需要客户端主动发起请求。服务端暗示通过 X-Subresources header 来通知,一般应用场景是客户端需要先查询服务端状态,然后再下载资源,可以节约一次查询请求。
自动 SPDY 出现后,页面加载时间相比于 HTTP 减少了 64%,而且各大浏览器厂商在 SPDY 诞生之后的 1 年多时间里也都陆续支持了 SPDY。但是,SPDY 的生存时间却没有人们想象中的那么长,SPDY 从 2012 年诞生到 2016 年停止维护,如果 HTTP 2.0 没有诞生,我相信 Google 可能会收到更多的真实反馈和数据,但是 SPDY 在这段时间里也完成了自己的使命。