TCP
UDP 是一种没有复杂的控制,提供无连接通信服务的一种协议,换句话说,它将部分控制部分交给应用程序去处理,自己只提供作为传输层协议最基本的功能。
而与 UDP 不同的是,同样作为传输层协议,TCP 协议要比 UDP 的功能多很多。
TCP
的全称是 Transmission Control Protocol
,它被称为是一种面向连接(connection-oriented)
的协议,这是因为一个应用程序开始向另一个应用程序发送数据之前,这两个进程必须先进行握手
,握手是一个逻辑连接,并不是两个主机之间进行真实的握手。
这个连接是指各种设备、线路或者网络中进行通信的两个应用程序为了相互传递消息而专有的、虚拟的通信链路,也叫做虚拟电路。
一旦主机 A 和主机 B 建立了连接,那么进行通信的应用程序只使用这个虚拟的通信线路发送和接收数据就可以保证数据的传输,TCP 协议负责控制连接的建立、断开、保持等工作。
TCP 连接是全双工服务(full-duplex service)
的,全双工是什么意思?全双工指的是主机 A 与另外一个主机 B 存在一条 TCP 连接,那么应用程数据就可以从主机 B 流向主机 A 的同时,也从主机 A 流向主机 B。
TCP 只能进行 点对点(point-to-point)
连接,那么所谓的多播
,即一个主机对多个接收方发送消息的情况是不存在的,TCP 连接只能连接两个一对主机。
TCP 的连接建立需要经过三次握手,这个我们下面再说。一旦 TCP 连接建立后,主机之间就可以相互发送数据了,客户进程通过套接字传送数据流。数据一旦通过套接字后,它就由客户中运行的 TCP 协议所控制。
TCP 会将数据临时存储到连接的发送缓存(send buffer)
中,这个 send buffer 是三次握手之间设置的缓存之一,然后 TCP 在合适的时间将发送缓存中的数据发送到目标主机的接收缓存中,实际上,每一端都会有发送缓存和接收缓存,如下所示
主机之间的发送是以 报文段(segment)
进行的,那么什么是 Segement 呢?
TCP 会将要传输的数据流分为多个块(chunk)
,然后向每个 chunk 中添加 TCP 标头,这样就形成了一个 TCP 段也就是报文段。每一个报文段可以传输的长度是有限的,不能超过最大数据长度(Maximum Segment Size)
,俗称 MSS
。在报文段向下传输的过程中,会经过链路层,链路层有一个 Maximum Transmission Unit
,最大传输单元 MTU, 即数据链路层上所能通过最大数据包的大小,最大传输单元通常与通信接口有关。
那么 MSS 和 MTU 有啥关系呢?
因为计算机网络是分层考虑的,这个很重要,不同层的称呼不一样,对于传输层来说,称为报文段而对网络层来说就叫做 IP 数据包,所以,MTU 可以认为是网络层能够传输的最大 IP 数据包,而 MSS(Maximum segment size)可以认为是传输层的概念,也就是 TCP 数据包每次能够传输的最大量。
TCP 报文段结构
在简单聊了聊 TCP 连接后,下面我们就来聊一下 TCP 的报文段结构,如下图所示
TCP 报文段结构相比 UDP 报文结构多了很多内容。但是前两个 32 比特的字段是一样的。它们是 源端口号
和 目标端口号
,我们知道,这两个字段是用于多路复用和多路分解的。另外,和 UDP 一样,TCP 也包含校验和(checksum field)
,除此之外,TCP 报文段首部还有下面这些
- 32 比特的
序号字段(sequence number field)
和 32 比特的确认号字段(acknowledgment number field)
。这些字段被 TCP 发送方和接收方用来实现可靠的数据传输。 - 4 比特的
首部字段长度字段(header length field)
,这个字段指示了以 32 比特的字为单位的 TCP 首部长度。TCP 首部的长度是可变的,但是通常情况下,选项字段为空,所以 TCP 首部字段的长度是 20 字节。 - 16 比特的
接受窗口字段(receive window field)
,这个字段用于流量控制。它用于指示接收方能够/愿意接受的字节数量 - 可变的
选项字段(options field)
,这个字段用于发送方和接收方协商最大报文长度,也就是 MSS 时使用 - 6 比特的
标志字段(flag field)
,ACK
标志用于指示确认字段中的值是有效的,这个报文段包括一个对已被成功接收报文段的确认;RST
、SYN
、FIN
标志用于连接的建立和关闭;CWR
和ECE
用于拥塞控制;PSH
标志用于表示立刻将数据交给上层处理;URG
标志用来表示数据中存在需要被上层处理的 紧急 数据。紧急数据最后一个字节由 16 比特的紧急数据指针字段(urgeent data pointer field)
指出。一般情况下,PSH 和 URG 并没有使用。
TCP 的各种功能和特点都是通过 TCP 报文结构来体现的,在聊完 TCP 报文结构之后,我们下面就来聊一下 TCP 有哪些功能及其特点了。
序号、确认号实现传输可靠性
TCP 报文段首部中两个最重要的字段就是 序号
和 确认号
,这两个字段是 TCP 实现可靠性的基础,那么你肯定好奇如何实现可靠性呢?要了解这一点,首先我们得先知道这两个字段里面存了哪些内容吧?
一个报文段的序号就是数据流的字节编号 。因为 TCP 会把数据流分割成为一段一段的字节流,因为字节流本身是有序的,所以每一段的字节编号就是标示是哪一段的字节流。比如,主机 A 要给主机 B 发送一条数据。数据经过应用层产生后会有一串数据流,数据流会经过 TCP 分割,分割的依据就是 MSS,假设数据是 10000 字节,MSS 是 2000 字节,那么 TCP 就会把数据拆分成 0 - 1999 , 2000 - 3999 的段,依次类推。
所以,第一个数据 0 - 1999 的首字节编号就是 0 ,2000 - 3999 的首字节编号就是 2000 。
然后,每个序号都会被填入 TCP 报文段首部的序号字段中。
至于确认号的话,会比序号要稍微麻烦一些。这里我们先拓展下几种通信模型。
- 单工通信:单工数据传输只支持数据在一个方向上传输;在同一时间只有一方能接受或发送信息,不能实现双向通信,比如广播、电视等。
- 双工通信是一种点对点系统,由两个或者多个在两个方向上相互通信的连接方或者设备组成。双工通信模型有两种:全双工(FDX)和半双工(HDX)
- 全双工:在全双工系统中,连接双方可以相互通信,一个最常见的例子就是电话通信。全双工通信是两个单工通信方式的结合,它要求发送设备和接收设备都有独立的接收和发送能力。
- 半双工:在半双工系统中,连接双方可以彼此通信,但不能同时通信,比如对讲机,只有把按钮按住的人才能够讲话,只有一个人讲完话后另外一个人才能讲话。
单工、半双工、全双工通信如下图所示
TCP 是一种全双工的通信协议,因此主机 A 在向主机 B 发送消息的过程中,也在接受来自主机 B 的数据。主机 A 填充进报文段的确认号是期望从主机 B 收到的下一字节的序号。稍微有点绕,我们来举个例子看一下。比如主机 A 收到了来自主机 B 发送的编号为 0 - 999 字节的报文段,这个报文段会写入序号中,随后主机 A 期望能够从主机 B 收到 1000 - 剩下的报文段,因此,主机 A 发送到主机 B 的报文段中,它的确认号就是 1000 。
累积确认
这里再举出一个例子,比如主机 A 在发送 0 - 999 报文段后,期望能够接受到 1000 之后的报文段,但是主机 B 却给主机 A 发送了一个 1500 之后的报文段,那么主机 A 是否还会继续进行等待呢?
答案显然是会的,因为 TCP 只会确认流中至第一个丢失字节为止的字节,因为 1500 虽然属于 1000 之后的字节,但是主机 B 没有给主机 A 发送 1000 - 1499 之间的字节,所以主机 A 会继续等待。
在了解完序号和确认号之后,我们下面来聊一下 TCP 的发送过程。下面是一个正常的发送过程
TCP 通过肯定的确认应答(ACK)
来实现可靠的数据传输,当主机 A将数据发出之后会等待主机 B 的响应。如果有确认应答(ACK),说明数据已经成功到达对端。反之,则数据很可能会丢失。
如下图所示,如果在一定时间内主机 A 没有等到确认应答,则认为主机 B 发送的报文段已经丢失,并进行重发。
主机 A 给主机 B 的响应可能由于网络抖动等原因无法到达,那么在经过特定的时间间隔后,主机 A 将重新发送报文段。
主机 A 没有收到主机 B 的响应还可能是因为主机 B 在发送给主机 A 的过程中丢失。
如上图所示,由主机 B 返回的确认应答,由于网络拥堵等原因在传送的过程中丢失,并没有到达主机 A。主机 A 会等待一段时间,如果在这段时间内主机 A 仍没有等到主机 B 的响应,那么主机 A 会重新发送报文段。
那么现在就存在一个问题,如果主机 A 给主机 B 发送了一个报文段后,主机 B 接受到报文段发送响应,此刻由于网络原因,这个报文段并未到达,等到一段时间后主机 A 重新发送报文段,然后此时主机 B 发送的响应在主机 A 第二次发送后失序到达主机 A,那么主机 A 应该如何处理呢?
TCP RFC 并未为此做任何规定,也就是说,我们可以自己决定如何处理失序到达的报文段。一般处理方式有两种
- 接收方立刻丢弃失序的报文段
- 接收方接受失序到达的报文段,并等待后续的报文段
一般来说通常采取的做法是第二种。