python数据分析基础007 -利用pandas带你玩转excel表格(中上篇)

简介: 还有一些基本的操作,接下来我们一起再深入的去了解pandas在excel中其他的一些有趣的操作吧!!

文章要点

  • 🍻结语
  • 🐚作者简介:苏凉(专注于网络爬虫,数据分析)

🐳博客主页:苏凉.py的博客

👑名言警句:海阔凭鱼跃,天高任鸟飞。

📰要是觉得博主文章写的不错的话,还望大家三连支持一下呀!!!

👉关注✨点赞👍收藏📂

🍺前言image.png🍀(一)在pandas中对excel进行函数填充

🍒1.在excel中进行函数填充image.png

🍒2.在pandas中实现函数填充

🔥2.1 列于列进行计算image.png

import pandas as pd
book = pd.read_excel('./Book.xlsx')
df = pd.DataFrame(book)
# 1.列与列进行计算
now_price = df['原价'] * df['折扣']
df['现价']=now_price
print(df)

结果:

🔥2.2 单元格与单元格进行计算image.png

# 2.单元格和单元格进行计算
# # 对索引进行遍历
for i in df.index:
    df['现价'].at[i] = df['原价'].at[i] * df['折扣'].at[i]

结果与上述相同。

🔥2.3 部分数据计算image.png

# 3.对部分单元格进行遍历
for i in range(5,11):
  df['现价'].at[i] = df['原价'].at[i] * df['折扣'].at[i]

结果:

🔥2.4 列增值

🌟2.4.1 pandas中的apply函数image.png

4.列增值
def add(x):
    return x+5
df['原价'] = df['原价'].apply(add)

image.png

df['原价'] = df['原价'].apply(lambda x:x+5)

以上两种方法都可以的到同样的结果:

🍀(二)排序以及多重排序在excel表格中我们可以对数据进行从大到小或是从小到大排序,也可以对多列数据进行排序,那再pandas中我们要如何操作呢?接下来就让我们一起看看吧!


实例:我们要对该表格的价格进行从大到小排序,以及将不值且价格从大到小来进行排序


🍒1.在excel表格中进行操作


结果:



🍒2.在pandas中实现排序操作

image.png

import pandas as pd
list = pd.read_excel('./count.xlsx')
df = pd.DataFrame(list)
df.sort_values(by=['Worthy','Price'],inplace=True,ascending=[True,False])
print(df)

image.png结果:

这样我们就实现了以上结果。

🍀(三)数据筛选

🍒1.在excel中进行数据筛选image.png🍒2.在pandas中实现数据筛选image.png

import pandas as pd
def age_25(a):
    return a<25
def score_85(b):
    return b>=85 and b <=100
student = pd.read_excel('./Students.xlsx',index_col='ID')
df = pd.DataFrame(student)
fin = df.loc[df['Age'].apply(age_25)].loc[df['Score'].apply(score_85)]
print(fin)

image.png

fin = df.loc[df['Age'].apply(lambda x:x<25)].loc[df['Score'].apply(lambda y:y>=85 and y<=100)]

两种方法结果相同:

🍻结语image.png

相关文章
|
8天前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
102 71
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
7天前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
106 73
|
4天前
|
存储 数据采集 数据可视化
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
42 22
|
9天前
|
数据采集 数据可视化 索引
Pandas数据应用:股票数据分析
本文介绍了如何使用Pandas库进行股票数据分析。首先,通过pip安装并导入Pandas库。接着,从本地CSV文件读取股票数据,并解决常见的解析错误。然后,利用head()、info()等函数查看数据基本信息,进行数据清洗,处理缺失值和重复数据。再者,结合Matplotlib和Seaborn进行数据可视化,绘制收盘价折线图。最后,进行时间序列分析,设置日期索引、重采样和计算移动平均线。通过这些步骤,帮助读者掌握Pandas在股票数据分析中的应用。
40 5
|
1月前
|
数据可视化 数据处理 Python
使用Pandas实现Excel中的数据透视表功能
本文介绍了如何使用Python的Pandas库实现Excel中的数据透视表功能,包括环境准备、创建模拟销售数据、代码实现及输出等步骤。通过具体示例展示了按地区和销售员汇总销售额的不同方法,如求和、平均值、最大值等,帮助读者掌握Pandas在数据处理上的强大能力。
62 12
|
2月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
2月前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势
|
2月前
|
数据采集 存储 数据可视化
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
|
2月前
|
数据采集 数据可视化 数据挖掘
掌握Python数据分析,解锁数据驱动的决策能力
掌握Python数据分析,解锁数据驱动的决策能力