6款Python可视化工具,总有一款适合你!

简介: 6款Python可视化工具,各有所长,适用于不同的场景,但是,它们都有一个共同点:强大且好用!下面就开始正文吧!

视觉是人们很重要的一种感官,所以,可视化,在数据相关的研发中可以起到“四两拨千斤”的作用。如果从直接查看离线存储在各类数据库中杂乱无章的数据,会让人瞬间感到崩溃、没有头绪。但是,如果对数据进行可视化,就变得一目了然。


例如,我们可以通过可视化看到一年中不同月份的降雨量、中国各个城市房价的对比、不同行业的薪资水平等。


Python相关的开发工作,很难绕过数据这一关,无论是做数据分析与挖掘,还是机器学习、计算机视觉。因此,一款好用的Python可视化工具,可以让开发效率得到极大的提升。本文就来介绍6款Python可视化工具,它们各有所长,适用于不同的场景,总会有一款适合你。


matplotlib


40.png


再提到matplotlib就有一些老生常谈了,我想,凡是做过Python开发的,应该对matplotlib都不陌生,它俨然已经成了Python的标准库级别的第三方库。


matplotlib可以称得上中规中矩,它像大多数编程语言的标准库一样,读写、显示、子图、常见图形,可以满足大多数需求常见。


pyecharts


41.gif


pyecharts是基于百度开源的Echarts开发的Python版可视化工具。


如果说matplotlib中规中矩,那么pyecharts可以称得上强大,例如,

  • 支持多达400+地图
  • 支持Jupyter Notebook、JupyterLab
  • 可轻松集成至 Flask,Sanic,Django 等主流 Web 框架
  • ...


from pyecharts.charts import Bar
from pyecharts import options as opts
# V1 版本开始支持链式调用
bar = (
    Bar()
    .add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
    .add_yaxis("商家A", [114, 55, 27, 101, 125, 27, 105])
    .add_yaxis("商家B", [57, 134, 137, 129, 145, 60, 49])
    .set_global_opts(title_opts=opts.TitleOpts(title="某商场销售情况"))
)
bar.render()
# 不习惯链式调用的开发者依旧可以单独调用方法
bar = Bar()
bar.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
bar.add_yaxis("商家A", [114, 55, 27, 101, 125, 27, 105])
bar.add_yaxis("商家B", [57, 134, 137, 129, 145, 60, 49])
bar.set_global_opts(title_opts=opts.TitleOpts(title="某商场销售情况"))
bar.render()


更重要的是pyecharts可以保存为离线的HTML文件,能够将图标详细数据离线保存,便于离线分析。


plotly.py


42.png


相对于前两款Python可视化工具,plotly.py更偏重于交互式图形可视化。


plotly.py是基于plotly.js进行开发,它继承了plotly.js的诸多优点,例如,可以绘制科学图表,3D图形,统计图表,SVG地图,财务图表等丰富图形。


AutoViz


43.png


数据可视化,大多数都需要把数据读取到内存中,然后对内存中的数据进行可视化。但是,对于真正令人头疼的是一次又一次的开发读取离线文件的数据接口。


而AutoViz就是用于解决这个痛点的,它真正的可以做到1行代码轻松实现可视化。它可以同时兼容txt、json、csv等主流离线数据格式,比较适合于机器学习、计算机视觉等涉及离线数据较多的应用场景。


Altair


Altair是一款基于Vega 和Vega-Lite开发的统计可视化库。

import altair as alt
from vega_datasets import data
source = data.unemployment_across_industries.url
alt.Chart(source).mark_area().encode(
    alt.X('yearmonth(date):T',
        axis=alt.Axis(format='%Y', domain=False, tickSize=0)
    ),
    alt.Y('sum(count):Q', stack='center', axis=None),
    alt.Color('series:N',
        scale=alt.Scale(scheme='category20b')
    )
).interactive()


44.png


Altair构建在强大的Vega-Lite JSON规范之上,并且具有API简单、友好、一致等诸多优点。因此,通过使用Altair,你可以把更多时间花费在理解数据和业务逻辑上,用最简短的代码实现数据可视化。


cufflinks


plotly前面已经介绍过,是一款非常强大的绘图工具。而pandas又是Python数据处理中非常常用的一个第三方库,那么,能不能把这两款强大的工具结合在一起呢?

cufflinks的回答是肯定的!


cufflinks结合了plotly的强大功能和panda的灵活性,可以方便地进行绘图,因此,就不需要在数据可视化过程中,对数据存储结构和数据类型进行复杂的转化了。


df=cf.datagen.ohlc()
qf=cf.QuantFig(df,title='First Quant Figure',legend='top',name='GS')
qf.add_bollinger_bands()
qf.iplot()


45.png


结语


上述介绍的6款Python可视化工具,各有所长,特色明显:

  • matplotlib适用场景广泛、中规中矩。
  • AutoViz适合离线数据可视化。
  • plotly.py见长与交互可视化。
  • ...


每位同学的工作场景不同,需求自然也不同,各位可以根据自己的的需求自行从中选择一款最适合自己的可视化工具!

相关文章
|
29天前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
212 7
|
2月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
2月前
|
JavaScript 前端开发 开发者
探索 DrissionPage: 强大的Python网页自动化工具
DrissionPage 是一个基于 Python 的网页自动化工具,结合了浏览器自动化的便利性和 requests 库的高效率。它提供三种页面对象:ChromiumPage、WebPage 和 SessionPage,分别适用于不同的使用场景,帮助开发者高效完成网页自动化任务。
201 4
|
2月前
|
开发者 Python
探索Python中的列表推导式:简洁而强大的工具
【10月更文挑战第41天】 在编程的世界中,效率与简洁是永恒的追求。本文将深入探讨Python编程语言中一个独特且强大的特性——列表推导式(List Comprehension)。我们将通过实际代码示例,展示如何利用这一工具简化代码、提升性能,并解决常见编程问题。无论你是初学者还是资深开发者,掌握列表推导式都将使你的Python之旅更加顺畅。
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
2月前
|
数据可视化 搜索推荐 Shell
Python与Plotly:B站每周必看榜单的可视化解决方案
Python与Plotly:B站每周必看榜单的可视化解决方案
|
3月前
|
机器学习/深度学习 数据可视化 Python
Python实用记录(三):通过netron可视化模型
使用Netron工具在Python中可视化神经网络模型,包括安装Netron、创建文件和运行文件的步骤。
56 2
Python实用记录(三):通过netron可视化模型
|
3月前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
64 2
|
3月前
|
C语言 开发者 Python
探索Python中的列表推导式:简洁而强大的工具
【10月更文挑战第21天】在Python的世界里,代码的优雅与效率同样重要。列表推导式(List Comprehensions)作为一种强大而简洁的工具,允许开发者通过一行代码完成对列表的复杂操作。本文将深入探讨列表推导式的使用方法、性能考量以及它如何提升代码的可读性和效率。
|
3月前
|
自然语言处理 算法 数据挖掘
探讨如何利用Python中的NLP工具,从被动收集到主动分析文本数据的过程
【10月更文挑战第11天】本文介绍了自然语言处理(NLP)在文本分析中的应用,从被动收集到主动分析的过程。通过Python代码示例,详细展示了文本预处理、特征提取、情感分析和主题建模等关键技术,帮助读者理解如何有效利用NLP工具进行文本数据分析。
66 2