做数据分析,要懂多少模型

简介: 一提起数据分析,很多人都会联想到“分析模型”,似乎分析模型是个很厉害又很神秘的东西。那做数据分析到底需要懂多少模型?今天简单跟大家分享一下。

一、什么是模型


模型,指的是对复杂现实的逻辑抽象。具体到数据分析上,当人们提及“模型”俩字,其实有两个含义:


第一类:业务模型。比如我们经常听的AARRR、RFM、SWOT、PEST等等。一般运营、产品、策划等部门的人更喜欢聊这些。这些模型经常是通过一组数据指标的组合,对业务情况进行描述。这些模型没有复杂的计算,却有很明确的业务含义。


比如RFM模型,本质上使用三个指标来描述用户消费状况:


  • R:最近一次消费至今时间
  • F:一定时间内重复消费频率
  • M:一定时间内累计消费金额



通过这三个指标,能清晰地描述用户状况:


  • R:最近一次消费时间离现在越远,用户越有流失可能。


  • F:一定时间内,如果消费频次越低,越需要用一次性手段(比如满XX元减X元、买满X件商品赠送几件)来激励用户;如果消费频次越高,越可以用持续性手段(比如积分、会员等级) 来维护用户。


  • M:用户消费越多,用户价值越高,能直接识别出高价值用户。


这样,运营、产品、策划们,就能利用模型看清楚:哪些用户能做,用什么手段做。这样利用模型进行分析,能避免大海捞针一样的找数据指标,提升分析效率。


第二类:算法模型。比如线性回归模型、逻辑回归模型、决策树模型等等。一般数据、开发部门的人,更喜欢聊这些。这些模型有统计学、机器学习的知识做基础,有固定的计算方法和使用场景。并且,这些计算过程和统计原理可能很复杂,没有专业知识的人会很难看懂。


比如预测数据,如果用回归模型进行预测,即使是计算一个很简单的y=60+5x模型,光检验的统计量,估计就把大家看晕倒了(如下图):


image.png


是不是看着头都大了,哈哈,大就对了。所以,一般把算法模型单独列出来,称为“算法”。“算法”需要有专业训练才能搞懂,以后单独开一个专题讲:做数据分析,需要懂多少算法。今天集中分享:需要懂多少业务模型。


二、要懂多少业务模型?


业务模型有很多类,并且随着时代变化,经常有新模型推出来,也有旧的模型淘汰掉。比如传统的AIDMA已经被AARRR取代了。所以想要穷尽所有模型,肯定不太现实,也没这个必要。建议小伙伴们只抓住几个关键的模型,理解其核心逻辑。


一:人货场模型


人货场模型是传统企业经常用的。在解读“传统卖场业绩怎么来?”的问题的时候,从人(消费者与业务员)、货(商品)、场(卖场)进行分析(如下图)。


image.png


掌握人货场的意义是:人货场模型是一个典型的并行逻辑模型。从三个角度解读问题,找到影响最大的因素。掌握了人货场的思路,以后其他类似的并列逻辑模型也能轻松掌握。


二:AARRR模型


AARRR模型是互联网企业经常用的。在解读“互联网如何实现用户增长?”的问题的时候,从拉新、促活、留存、转化、转介绍五个角度进行分析(如下图)。


image.png



掌握AARRR的意义是:AARRR是一个典型的串行逻辑模型。要先拉新,再有促活和留存,再有转发和转介绍。掌握了这种先做步骤A,再做步骤B的思路后,所有的串行逻辑模型都能轻松掌握。


三:OSM模型


掌握OSM模型的意义是:OSM是一套拆解指标的方法,掌握了这套拆解逻辑以后,就能熟练地拆解各种大目标,遇到新问题也能应对自如。


image.png


以上三个模型掌握以后,其他模型大部分大同小异,依葫芦画瓢也能轻松搞掂。


三、遇到新“模型”怎么办?


在业务模型领域,有新模型冒出来是很正常的事。比如这几年,阿里就先后推出了:AIPL、FAST、GROW等几个模型。说不定过今年又有新模型出来,该怎么办呢?


有个简单的懒人攻略,小伙伴们可以收下:所有的业务模型,本质上是围绕一个问题的指标的组合。因此遇到这些新模型,大家记得搞清楚三件事:


  • 这个模型描述的是什么问题
  • 组成模型的是哪几个指标
  • 如何通过指标解读问题


比如GROW模型


  • 这个模型,描述的是:类目是否有潜力


  • 组成模型的有四个指标


渗透力(Gain): 指消费者购买更多类型品类 / 产品对品牌总增长机会的贡献;


复购力(Retain): 指消费者更频繁 / 重复购买产品对品牌总增长机会的贡献;


价格力(bOOst): 指消费者购买价格升级产品对品牌总增长机会的贡献;

延展力(Widen): 指品牌通过提供现有品类外其他关联类型产品所贡献的总增长机会。


四、如何解读


比如发现母婴行业的渗透力(G)明显很高,则在经营该品类的时候,可以考虑做更多交叉推荐,做更多品类扩展,通过多品类交叉购买提升业绩。


以上只是个小例子。小伙伴们熟悉了这一套操作以后,再遇到新模型,也能快速掌握啥意思了。今天的分享略长,大家喜欢的话,记得转发+点赞+在看,鼓励下小熊妹哦。下一篇我们来分享《做数据分析,要懂多少算法》敬请期待哦。


相关文章
|
3月前
|
机器学习/深度学习 数据采集 数据挖掘
实战派教学:掌握Scikit-learn,轻松实现数据分析与机器学习模型优化!
【10月更文挑战第4天】Scikit-learn凭借高效、易用及全面性成为数据科学领域的首选工具,简化了数据预处理、模型训练与评估流程,并提供丰富算法库。本文通过实战教学,详细介绍Scikit-learn的基础入门、数据预处理、模型选择与训练、评估及调优等关键步骤,助你快速掌握并优化数据分析与机器学习模型。从环境搭建到参数调优,每一步都配有示例代码,便于理解和实践。
118 2
|
8月前
|
SQL 自然语言处理 数据挖掘
大模型与数据分析:探索Text-to-SQL(上)
大模型与数据分析:探索Text-to-SQL(上)
3671 0
|
8月前
|
SQL 自然语言处理 数据挖掘
大模型与数据分析:探索Text-to-SQL(中)
大模型与数据分析:探索Text-to-SQL(中)
1272 0
|
5月前
|
数据采集 机器学习/深度学习 算法
"揭秘数据质量自动化的秘密武器:机器学习模型如何精准捕捉数据中的‘隐形陷阱’,让你的数据分析无懈可击?"
【8月更文挑战第20天】随着大数据成为核心资源,数据质量直接影响机器学习模型的准确性和效果。传统的人工审查方法效率低且易错。本文介绍如何运用机器学习自动化评估数据质量,解决缺失值、异常值等问题,提升模型训练效率和预测准确性。通过Python和scikit-learn示例展示了异常值检测的过程,最后强调在自动化评估的同时结合人工审查的重要性。
123 2
|
5月前
|
机器学习/深度学习 前端开发 数据挖掘
基于Python Django的房价数据分析平台,包括大屏和后台数据管理,有线性、向量机、梯度提升树、bp神经网络等模型
本文介绍了一个基于Python Django框架开发的房价数据分析平台,该平台集成了多种机器学习模型,包括线性回归、SVM、GBDT和BP神经网络,用于房价预测和市场分析,同时提供了前端大屏展示和后台数据管理功能。
129 9
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
【python】python母婴数据分析模型预测可视化(数据集+论文+PPT+源码)【独一无二】
【python】python母婴数据分析模型预测可视化(数据集+论文+PPT+源码)【独一无二】
|
6月前
|
机器学习/深度学习 算法 数据挖掘
从零到精通:Scikit-learn在手,数据分析与机器学习模型评估不再难!
【7月更文挑战第25天】在数据科学中,模型评估是理解模型泛化能力的关键。对新手来说,众多评估指标可能令人困惑,但Scikit-learn简化了这一过程。
63 2
|
5月前
|
机器学习/深度学习 搜索推荐 数据挖掘
【深度解析】超越RMSE和MSE:揭秘更多机器学习模型性能指标,助你成为数据分析高手!
【8月更文挑战第17天】本文探讨机器学习模型评估中的关键性能指标。从均方误差(MSE)和均方根误差(RMSE)入手,这两种指标对较大预测偏差敏感,适用于回归任务。通过示例代码展示如何计算这些指标及其它如平均绝对误差(MAE)和决定系数(R²)。此外,文章还介绍了分类任务中的准确率、精确率、召回率和F1分数,并通过实例说明这些指标的计算方法。最后,强调根据应用场景选择合适的性能指标的重要性。
677 0
|
6月前
|
数据采集 机器学习/深度学习 数据挖掘
Python基于波动率模型(ARCH和GARCH)进行股票数据分析项目实战
Python基于波动率模型(ARCH和GARCH)进行股票数据分析项目实战
|
6月前
|
数据采集 机器学习/深度学习 数据可视化
关于Python数据分析项目的简要概述:从CSV加载数据,执行数据预处理,进行数据探索,选择线性回归模型进行训练,评估模型性能并优化,最后结果解释与可视化。
【7月更文挑战第5天】这是一个关于Python数据分析项目的简要概述:从CSV加载数据,执行数据预处理(填充缺失值,处理异常值),进行数据探索(可视化和统计分析),选择线性回归模型进行训练,评估模型性能并优化,最后结果解释与可视化。此案例展示了数据科学的典型流程。
95 2

热门文章

最新文章