PyHubWeekly | 第十八期:1行代码搞定数据可视化

简介: PyHubWeekly每周定期更新,精选GitHub上优质的Python项目/小工具。我把PyHubWeekly托管到了Github,感兴趣的可以搜索Github项目PyHubWeekly[1],如果喜欢,麻烦给个Star支持一下吧。此外,欢迎大家通过提交issue来投稿和推荐自己的项目~本期为大家推荐GitHub上5个优质的Python项目,它们分别是:•FlashText•PyFlux•bamboolib•MrDoc•AutoViz

下面分别来介绍一下上述5个GitHub项目。

FlashText

Start:4.3k

FlashText[2]是一款用于提取或者替换句子中关键字的工具。


FlashText具有诸多适合于网页爬虫或者文本处理的功能,例如,

提取替换删除多关键字...

有同学会有疑问,它和正则表达式功能大同小异,为什么要选择FlashText呢?


下面来通过一幅图对比一下两款工具在速度方面的表现,

19.png

安装使用

可以直接使用pip命令进行安装,

pip install flashtext

可以通过一个简单的示例看一下FlashText的使用,

>>> from flashtext import KeywordProcessor
>>> keyword_processor = KeywordProcessor()
>>> # keyword_processor.add_keyword(<unclean name>, <standardised name>)
>>> keyword_processor.add_keyword('Big Apple', 'New York')
>>> keyword_processor.add_keyword('Bay Area')
>>> keywords_found = keyword_processor.extract_keywords('I love Big Apple and Bay Area.')
>>> keywords_found
>>> # ['New York', 'Bay Area']


PyFlux

Start:1.7k


PyFlux[3]是一款开源的时间序列分析库。


时序分析是统计学中非常重要的一个分支,在具有时序特征的数据中,往往蕴含着很多令人感兴趣的特征信息,可以根据这些信息对未来进行准确的预测。


PyFlux将推理模型(frequentist和Bayesian)和参数设置应用于时序分析中,使得时序分析变得更加容易。PyFlux具备如下特性,


为时间序列数据建立模型

对模型进行推理模型的检查和评估

模型修改用模型进行回顾和预测


具体的示例,可以查看官方文档[4]


bamboolib

Start:550


bamboolib[5]是使得pandas DataFrames数据分析变得更加容易的一款Python库。


做数据相关工作的同学,对pandas肯定不会陌生。它很强大,甚至对于很多Python开发者具备着不可替代的位置,但是对于初学者却有时候让人难以理解。


bamboolib使得pandas DataFrames数据分析变得更加简单容易,在以往需要上百行完成的工作,在bamboolib中只需要简短的一行即可。


通过bamboolib的使用,它可以提升你的工作效率,减少在无价值的事情上浪费过多精力。

20.png

另外,bamboolib不仅支持本地使用,还可以在jupyter notebook和jupyterLab中使用。


安装

下面分别是本地、jupyter notebook、jupyterLab中安装的方法,

pip install bamboolib
# Jupyter Notebook extensions
python -m bamboolib install_nbextensions
# JupyterLab extensions
python -m bamboolib install_labextensions

                               MrDoc

Start:167


MrDoc[6]基于Python开发的在线文档系统,适合作为个人和小型团队的文档、笔记、知识管理工具。

21.png


MrDoc可以支持markdown、表格、图片上传等文档常用的功能,另外,它还具备一个完善系统应当具备的用户注册、管理等功能。可以用于团队内部的知识共享,文档管理。


另外,MrDoc已经开源,作为一个完善的应用系统,对于Python感兴趣的同学也可以拿这个项目用于学习和提升,了解一个完善系统的开发需要哪些环节,包含哪些模块,整个链路又是如何衔接的。


AutoViz

Start:140

AutoViz[7]是一款数据集可视化工具。

通过AutoViz,一行代码就可以轻松实现数据集的可视化工作。

22.png


AutoViz除了在数据可视化方面做了很多优化之外,还在数据源接口方面提供了很大的便利。它可以同时兼容txt、json、csv等离线数据格式。


安装使用

通过pip安装AutoViz,

pip install autoviz


使用AutoViz过程中,首先需要对AutoViz进行实例化,

from autoviz.AutoViz_Class import AutoViz_Class
AV = AutoViz_Class()


然后加载数据,在家在数据过程中,可以把数据加载进pandas DataFrame,也可以简单的提供一个数据路径。剩余的工作,交给AutoViz即可,

filename = ""
sep = ","
dft = AV.AutoViz(
    filename,
    sep,
    target,
    df,
    header=0,
    verbose=0,
    lowess=False,
    chart_format="svg",
    max_rows_analyzed=150000,
    max_cols_analyzed=30,
)
相关文章
|
6月前
|
数据采集 数据可视化 搜索推荐
《统计学简易速速上手小册》第2章:数据探索与可视化(2024 最新版)
《统计学简易速速上手小册》第2章:数据探索与可视化(2024 最新版)
61 1
|
6月前
|
算法 数据可视化 安全
《统计学简易速速上手小册》第6章:多变量数据分析(2024 最新版)
《统计学简易速速上手小册》第6章:多变量数据分析(2024 最新版)
55 1
|
编解码 数据可视化 定位技术
神器-可视化分析之Basemap入门详(一)
今天咱们讲解一个画地图神器-BaseMap,看看这个神器讲给我们带来怎样的使用体验。
428 0
神器-可视化分析之Basemap入门详(一)
|
14天前
|
SQL 数据可视化 数据挖掘
让项目数据更有说服力:五款必备数据可视化管理工具推荐
在现代企业管理中,数据是决策的重要依据。有效的数据可视化工具能帮助项目经理快速洞察项目进展、评估风险、优化资源配置。本文推荐五款必备的数据可视化管理工具,包括板栗看板、Power BI、Tableau、Google Data Studio和Qlik Sense,从功能、易用性和优缺点等方面进行全面评析,帮助您将数据转化为行动,推动项目高效前行。
46 4
|
3月前
|
数据采集 数据可视化 算法
GitHub星标68K!Python数据分析入门手册带你从数据获取到可视化
Python作为一门优秀的编程语言,近年来受到很多编程爱好者的青睐。一是因为Python本身具有简捷优美、易学易用的特点;二是由于互联网的飞速发展,我们正迎来大数据的时代,而Python 无论是在数据的采集与处理方面,还是在数据分析与可视化方面都有独特的优势。我们可以利用 Python 便捷地开展与数据相关的项目,以很低的学习成本快速完成项目的研究。
|
3月前
|
数据可视化 开发者 Python
Python 的 Plotly 库究竟隐藏着怎样的数据可视化魔法?快来一探究竟!
【8月更文挑战第22天】Python以简洁高效著称,在数据可视化领域,Plotly犹如魔法棒,将抽象数据变身为直观图形。这款强大的开源库支持多样图表创作,如线图、柱状图等,并可在Jupyter Notebook中使用或生成HTML文件分享。只需几步,即可安装并运用Plotly展示销售数据或分析学生成绩关联,甚至创建交互式股票价格走势图,让数据活灵活现,一目了然。
36 0
|
5月前
|
数据挖掘 数据库连接 Python
GitHub高赞!Python零基础也能搞定的数据分析与处理
经常会有人让我推荐一些 Python 入门教程。虽然 Python 入内教程到处都有,但是这些教程要么太宽泛(没有讲任何关于数据分析的内容),要么太专业(全是关于科学原理的内容)。然而Excel用户往往处在一个中间位置:他们的确是和数据打交道,但是科学原理对于他们来说可能又太专业了。他们常常有一些现有教程无法满足的特殊需求,举例如下 • 为完成某个任务,我应该用哪个 Python-Excel包? • 我如何将 Power Query 数据库连接迁移到 Python? • Excel中的 AutoFilter和数据透视表在 Python 中对应的是什么?
|
数据可视化
漏刻有时数据可视化LockDataV(1/3):目录结构
漏刻有时数据可视化LockDataV(1/3):目录结构
49 0
|
6月前
|
移动开发 JavaScript 前端开发
用惯了其他人的库,自己来实现一个动图图表生成工具,真香!
用惯了其他人的库,自己来实现一个动图图表生成工具,真香!
|
6月前
|
机器学习/深度学习 数据可视化 Python
【Python机器学习】数据可视化讲解及性别、周末与购物间可视化实战(超详细 附源码)
【Python机器学习】数据可视化讲解及性别、周末与购物间可视化实战(超详细 附源码)
84 0
下一篇
无影云桌面