九大数据分析方法:分层分析法

简介: 大家好,我是爱学习的小熊妹。今天继续跟大家分享:分层分析法。这个方法也非常简单实用,即可以弥补矩阵分析法的缺陷,又是用户分群,商品ABC分析的基础,很实用哦。

一、为什么要做分层


分层分析,是为了应对平均值失效的场景。


image.png


这就是典型的平均值失效。统计的时候,因为一个张老财,把人均数值搞得不可信了。而分层分析法处理这个问题的思路也很简单:把张老财单独分一层“老财主”把其他人单独分一层“穷光蛋”“老财主”≥≥“穷光蛋”

搞掂啦!


这样下次统计的时候,就可以看:有多少“老财主”,有多少“穷光蛋”,两个收入阶层单独统计平均收入,作为打土豪的依据。这样就解决了平均值失效的问题。


二、分层如何做


第一步:明确分层对象和分层指标。比如:


  • 想区分用户消费力,分层对象就是:用户,分层指标就是:消费金额


  • 想区分商品销售额,分层对象就是:商品,分层指标就是:销售金额


  • 想区分门店营业额,分层对象就是:门店,分层指标就是:营业收入

这些要提前想好


第二步:查看数据,确认是否需要分层。


分层是应对平均值失效的情况的,所以如果如下图1,存在极值影响的情况,则适合分层。如果是如2,极值影响不大,则不适合


image.png


第三步:设定分层的层级。


这是最纠结的一步,很多时候会因为到底多高算“高”而吵起来。最好的解决办法是老板拍板,所有人都不用争不用吵了。


除此以外,还有一些简单有效的判断方法,比如著名的“二八原则”。以上述销售业绩分层为例,可以先从高到低排序,然后把累积业绩占80%的人选出来,作为“第1层级(优等)”,其他的归为“第2层级(次等)”(如下图)


image.png


但是从上图也能看出,这样分并不很合理,有一些业绩很低的业务员被归入了一级。这是因为,在这一个销售团队内,业绩差异实在太大了,因此简单的二八开并不能有效区分。


此时还可以用“二四六八十”法则,即计算个体与平均值的差异,然后:


  • 比平均值高的,根据平均值的2倍、4倍、6倍、8倍、10倍,分层


  • 比平均值低的,根据平均值的1/2、1/4分层


这样的分层,能有效区分远远高于平均值的个体,效果如下图


image.png


分完以后,分层就结束啦!多简单


三、如何利用分层分析?


分层的最大作用是帮我们看清楚:到底谁是主力,谁是吊车尾。从而指导业务,从人海战术向精兵简政思考。还拿上述的销售团队举例,如果发现A1号销售这么厉害,我们就不会想着:“人均业绩100,那想多做1000业绩,就得招10个人”,而是会去想:“怎么样再挖掘一个A1过来。”


此时,有几个常见的思考方向:


  • 人员画像:A1是什么学历、多大年纪、多久从业经验。此时对应的做法是:找和A1有类似画像的人,应该他也能像A1一样好


  • 人员行为:A1做了哪些事情?能取得这么好的业绩。此时对应的做法是:找到A1的关键行为,然后让其他人学A1


  • 目标客户:A1服务了哪些客户?是不是这些客户本身更容易做?此时对应的做法是:让其他人多发展同行业的客户,然后再找新的销售,服务不容易做的客户


  • 成长经历:A1是怎么从普通人里脱颖而出的,稳定不稳定?此时对应的做法是:如果A1是稳定成长的,则看这么培养其他人;如果A纯粹运气好,则采用大浪淘沙的战术,多搞新人进来,期望冒出头一个新A1


可见:分层分析是其他分析的前哨站,做好了分层,能引发更多思考和进一步分析。有很多讲数据分析的文章会提到分层分析,比如应用于商品的,叫ABC分类,应用于用户的,叫用户分层,应用于业务的,叫二八法则。本质都是一回事。


四、分层分析的不足之处


每种方法都不是万能的,分层分析的缺点,在于:只考虑一个分层指标。虽然简单,但是片面,不能全面说明问题。如果想采用二个指标,可以用矩阵分析法,如果想采用多个指标,可以用DEA模型。


以上就是今天的分享,喜欢的话,可以点赞、在看、转发三连,支持一下小熊妹哦。数据分析的方法有很多,一口吃不成个胖子,小熊妹会从一个指标到两个指标、三个指标、N个指标,逐步为大家展示,敬请期待哦。


相关文章
|
2月前
|
数据可视化 数据挖掘
R语言生存分析数据分析可视化案例(下)
R语言生存分析数据分析可视化案例
|
10天前
|
JavaScript Java 测试技术
基于springboot+vue.js+uniapp小程序的数据分析岗位招聘信息与分析附带文章源码部署视频讲解等
基于springboot+vue.js+uniapp小程序的数据分析岗位招聘信息与分析附带文章源码部署视频讲解等
7 0
|
1月前
|
JSON 数据挖掘 API
数据分析实战丨基于pygal与requests分析GitHub最受欢迎的Python库
数据分析实战丨基于pygal与requests分析GitHub最受欢迎的Python库
27 2
|
1月前
|
算法 数据挖掘 数据处理
数据分析之可重复与独立样本的T-Test分析
数据分析之可重复与独立样本的T-Test分析
22 2
|
19天前
|
数据采集 Web App开发 数据可视化
程序员必知:对厦门二手房的数据分析与可视化分析
程序员必知:对厦门二手房的数据分析与可视化分析
26 0
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
python每日可视化分析:从过去到现代数据分析的演进
python每日可视化分析:从过去到现代数据分析的演进
|
2月前
|
数据可视化 数据挖掘 C++
数据分析综合案例讲解,一文搞懂Numpy,pandas,matplotlib,seaborn技巧方法
数据分析综合案例讲解,一文搞懂Numpy,pandas,matplotlib,seaborn技巧方法
|
2月前
|
数据采集 人工智能 数据挖掘
「一行分析」利用12000条招聘数据分析Python学习方向和就业方向
「一行分析」利用12000条招聘数据分析Python学习方向和就业方向
|
2月前
|
数据可视化 数据挖掘
R语言生存分析数据分析可视化案例(上)
R语言生存分析数据分析可视化案例