PyHubWeekly | 第十六期:给你的Python项目上个保险吧!

简介: PyHubWeekly每周定期更新,精选GitHub上优质的Python项目/小工具。我把PyHubWeekly托管到了Github,感兴趣的可以搜索Github项目PyHubWeekly[1],如果喜欢,麻烦给个Star支持一下吧。此外,欢迎大家通过提交issue来投稿和推荐自己的项目~本期为大家推荐GitHub上5个优质的Python项目,它们分别是:•riskquant•pydata-book•avatarify•pyprotect•prophet

下面分别来介绍一下上述5个GitHub项目。

riskquant

Star:457

riskquant[2]是一款Python量化风险库。

riskquant内置了多个知名的数据分析算法,例如,simplelosspertloss,可以很简单的在Python中实现量化风险分析。

安装

克隆下源代码,进入根目录,执行下方命令,

pip install .

示例:

>> from riskquant import pertloss
>> p = pertloss.PERTLoss(low_loss=10, high_loss=100, min_freq=0.1, max_freq=0.7, most_likely_freq=0.3, kurtosis=1)
>> simulate_100 = p.simulate_years(100)
>> p.summarize_loss(simulate_100)
{'minimum': 0,
 'tenth_percentile': 0,
 'mode': 0,
 'median': 1,
 'ninetieth_percentile': 2,
 'maximum': 6}

pydata-book

Star:12.1k

7.png

pydata-book[3]是Wes McKinney(pandas的创作者)和O'Reilly Media编著的《Python for Data Analysis》书籍的学习资料和IPython Notebook源代码。

这份学习资料不仅包含数据分析、机器学习里常用的工具,例如,numpy和pandas。也包含数据分析中常用的技术和手段,例如,

数据清洗和处理时间序列缺失数据处理......

此外,pydata-book还包含数据分析实例,在实践中对数据分析的知识、工具使用有更加深入的认识。

avatarify

Star:5.6k

avatarify[4]是一款应用来自NIPS的中心模型,能够为 Zoom、Skype 这类视频通话运用添加自己的替身Python工具。

网络异常,图片无法展示
|

使用教程

安装miniconda和git

克隆代码,执行安装命令

git clone https://github.com/alievk/avatarify.git
cd avatarify
scripts\install_windows.bat

下载训练的权重,放置到目录下安装媒体播放器,例如,OBS

avatarify项目提供了完整的训练、安装、配置过程,涉及的知识体系、架构较为完善。因此,通过学习该项目,可以对一款完整应用的开发有更加清晰的认识。


pyprotect

Star:266

pyprotect[5]是一个轻量级的python代码保护、加密工具。

这款工具有如下特性,

跨平台简单易用不需要额外依赖

使用教程

编译项目,

mkdir build
cd build && cmake .. && make

加密项目,

python encrypt.py -s SCRIPTS_DIR -e ENTRY_POINT_LIST -o OUTPUT_DIR [--exclude EXCLUDED_SCRIPT_LIST]


prophet

Star:10.7k

prophet[6]是一个用于线性或非线性增长的多个季节性的时间序列数据提供高质量预测的工具。

Prophet是一个基于加法模型预测时间序列数据的过程,其中非线性趋势与年、周、日的季节性以及假日效应相吻合。它最适用于具有强烈季节效应和几个季节的历史数据的时间序列。Prophet对丢失的数据和趋势的变化是很健壮的,并且能很好地处理异常值。

使用教程

可以直接使用pip命令安装,

pip install fbprophet
CMDSTAN=/tmp/cmdstan-2.22.1 STAN_BACKEND=PYSTAN,CMDSTANPY pip ins
相关文章
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
Python 数据分析:从零开始构建你的数据科学项目
【10月更文挑战第9天】Python 数据分析:从零开始构建你的数据科学项目
56 2
|
19天前
|
弹性计算 Linux iOS开发
Python 虚拟环境全解:轻松管理项目依赖
本文详细介绍了 Python 虚拟环境的概念、创建和使用方法,包括 `virtualenv` 和 `venv` 的使用,以及最佳实践和注意事项。通过虚拟环境,你可以轻松管理不同项目的依赖关系,避免版本冲突,提升开发效率。
|
1月前
|
JSON 搜索推荐 API
Python的web框架有哪些?小项目比较推荐哪个?
【10月更文挑战第15天】Python的web框架有哪些?小项目比较推荐哪个?
53 1
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
56 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
2月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
93 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
1月前
|
存储 开发工具 Python
【Python项目】外星人入侵项目笔记
【Python项目】外星人入侵项目笔记
38 3
|
1月前
|
前端开发 JavaScript API
惊呆了!学会AJAX与Fetch API,你的Python Web项目瞬间高大上!
在Web开发领域,AJAX与Fetch API是提升交互体验的关键技术。AJAX(Asynchronous JavaScript and XML)作为异步通信的先驱,通过XMLHttpRequest对象实现了局部页面更新,提升了应用流畅度。Fetch API则以更现代、简洁的方式处理HTTP请求,基于Promises提供了丰富的功能。当与Python Web框架(如Django、Flask)结合时,这两者能显著增强应用的响应速度和用户体验,使项目更加高效、高大上。
51 2
|
1月前
|
机器学习/深度学习 算法框架/工具 Python
基于深度学习的手写数字识别项目GUI(Deep Learning Project – Handwritten Digit Recognition using Python)
基于深度学习的手写数字识别项目GUI(Deep Learning Project – Handwritten Digit Recognition using Python)
67 0
|
2月前
|
前端开发 Python
前后端分离的进化:Python Web项目中的WebSocket实时通信解决方案
在现代Web开发领域,前后端分离已成为一种主流架构模式,它促进了开发效率、提升了应用的可维护性和可扩展性。随着实时数据交互需求的日益增长,WebSocket作为一种在单个长连接上进行全双工通讯的协议,成为了实现前后端实时通信的理想选择。在Python Web项目中,结合Flask框架与Flask-SocketIO库,我们可以轻松实现WebSocket的实时通信功能。
58 2
|
2月前
|
机器学习/深度学习 人工智能 算法
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台。果蔬识别系统,本系统使用Python作为主要开发语言,通过收集了12种常见的水果和蔬菜('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜'),然后基于TensorFlow库搭建CNN卷积神经网络算法模型,然后对数据集进行训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地文件方便后期调用。再使用Django框架搭建Web网页平台操作界面,实现用户上传一张果蔬图片识别其名称。
56 0
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
下一篇
无影云桌面