一行代码干掉 debug 和 print,助力算法学习

简介: 在写算法的时候,总是要每行每个变量一个个的 debug,有时候还要多写几个 print,一道算法题要花好长时间才能理解。pysnooper 模块可以把在运行中变量值都给打印出来。

在写算法的时候,总是要每行每个变量一个个的 debug,有时候还要多写几个 print,一道算法题要花好长时间才能理解。pysnooper 模块可以把在运行中变量值都给打印出来。


模块安装

pip3 install pysnooper


简单例子

下面是道简单的力扣算法题作为一个简单的例子


import pysnooper
@pysnooper.snoop()
def longestCommonPrefix(strs):
    res = ''
    for i in zip(*strs):
        print(i)
        if len(set(i)) == 1:
            res += i[0]
        else
            break
    return res
if __name__ == 'main':
    longestCommonPrefix(["flower","flow","flight"])


结果:

3:38:25.863579 call         4 def longestCommonPrefix(strs):
23:38:25.864474 line         5     res = ''
New var:....... res = ''
23:38:25.864474 line         6     for i in zip(*strs):
New var:....... i = ('f', 'f', 'f')
23:38:25.865479 line         7         print(i)
('f', 'f', 'f')
23:38:25.866471 line         8         if len(set(i))==1:
23:38:25.866471 line         9             res+=i[0]
Modified var:.. res = 'f'
23:38:25.866471 line         6     for i in zip(*strs):
Modified var:.. i = ('l', 'l', 'l')
23:38:25.866471 line         7         print(i)
('l', 'l', 'l')
23:38:25.867468 line         8         if len(set(i))==1:
23:38:25.867468 line         9             res+=i[0]
Modified var:.. res = 'fl'
23:38:25.868476 line         6     for i in zip(*strs):
Modified var:.. i = ('o', 'o', 'i')
23:38:25.868476 line         7         print(i)
('o', 'o', 'i')
23:38:25.869463 line         8         if len(set(i))==1:
23:38:25.869463 line        11             break
23:38:25.869463 line        12     return res
23:38:25.869463 return      12     return res
Return value:.. 'fl'
Elapsed time: 00:00:00.008201


我们可以看到 pysnooper 把整个执行程序都记录了下来,其中包括行号, 行内容,变量的结果等情况,我们很容易的就看懂了这个算法的真实情况。并且不需要再使用 debug 和 print 调试代码。很是省时省力,只需要在方法上面加一行 @pysnooper.snoop()。


复杂使用


pysnooper 包含了多个参数,一起来看看吧


output

output 默认输出到控制台,设置后输出到文件,在服务器中运行的时候,特定的时间出现代码问题就很容易定位错误了,不然容易抓瞎。小编在实际中已经被这种问题困扰了好几次,每次都掉好多头发。


@pysnooper.snoop('D:\pysnooper.log')
def longestCommonPrefix(strs):


示例结果:

59.png

watch 和 watch_explode

watch 用来设置跟踪的非局部变量,watch_explode 表示设置的变量都不监控,只监控没设置的变量,正好和 watch 相反。

index = 1
@pysnooper.snoop(watch=('index'))
def longestCommonPrefix(strs):


示例结果

没有加 watch 参数


Starting var:.. strs = ['flower', 'flow', 'flight']
00:12:33.715367 call         5 def longestCommonPrefix(strs):
00:12:33.717324 line         7     res = ''
New var:....... res = ''


加了watch 参数,就会有一个 Starting var:.. index


Starting var:.. strs = ['flower', 'flow', 'flight']
Starting var:.. index = 1
00:10:35.151036 call         5 def longestCommonPrefix(strs):
00:10:35.151288 line         7     res = ''
New var:....... res = ''


depth

depth 监控函数的深度


@pysnooper.snoop(depth=2)
def longestCommonPrefix(strs):
    otherMethod()


示例结果


Starting var:.. strs = ['flower', 'flow', 'flight']
00:20:54.059803 call         5 def longestCommonPrefix(strs):
00:20:54.059803 line         6     otherMethod()
    00:20:54.060785 call        16 def otherMethod():        
    00:20:54.060785 line        17     x = 1
    New var:....... x = 1
    00:20:54.060785 line        18     x = x + 1
    Modified var:.. x = 2
    00:20:54.060785 return      18     x = x + 1
    Return value:.. None
00:20:54.061782 line         7     res = ''

监控的结果显示,当监控到调用的函数的时候,记录上会加上缩进,并将它的局部变量和返回值打印处理。


prefix

prefix 输出内容的前缀


@pysnooper.snoop(prefix='-------------')
def longestCommonPrefix(strs):


示例结果

-------------Starting var:.. strs = ['flower', 'flow', 'flight']
-------------00:39:13.986741 call         5 def longestCommonPrefix(strs):
-------------00:39:13.987218 line         6     res = ''


relative_time

relative_time 代码运行的时间


@pysnooper.snoop(relative_time=True)
def longestCommonPrefix(strs):


示例结果

Starting var:.. strs = ['flower', 'flow', 'flight']
00:00:00.000000 call         5 def longestCommonPrefix(strs):
00:00:00.001998 line         6     res = ''
New var:....... res = ''
00:00:00.001998 line         7     for i in zip(*strs):


max_variable_length


max_variable_length 输出的变量和异常的最大长度,默认是 100 个字符,超过 100 个字符就会被截断,可以设置为 max_variable_length=None 不截断输出

@pysnooper.snoop(max_variable_length=5)
def longestCommonPrefix(strs):


示例结果

Starting var:.. strs = [...]
00:56:44.343639 call         5 def longestCommonPrefix(strs):
00:56:44.344696 line         6     res = ''
New var:....... res = ''
00:56:44.344696 line         7     for i in zip(*strs):      
New var:....... i = (...)


总结

本文介绍了怎么使用 pysnooper 工具,pysnooper 不仅可以少一些 debug 和 print,更能帮助理解算法题。

目录
相关文章
|
3天前
|
机器学习/深度学习 算法 安全
【无人机三维路径规划】基于非支配排序的鲸鱼优化算法NSWOA与多目标螳螂搜索算法MOMSA求解无人机三维路径规划研究(Matlab代码实现)
【无人机三维路径规划】基于非支配排序的鲸鱼优化算法NSWOA与多目标螳螂搜索算法MOMSA求解无人机三维路径规划研究(Matlab代码实现)
|
3天前
|
机器学习/深度学习 算法 调度
基于NSGA-III算法求解微电网多目标优化调度研究(Matlab代码实现)
基于NSGA-III算法求解微电网多目标优化调度研究(Matlab代码实现)
|
4天前
|
机器学习/深度学习 运维 算法
基于非支配排序遗传算法NSGAII的综合能源优化调度(Matlab代码实现)
基于非支配排序遗传算法NSGAII的综合能源优化调度(Matlab代码实现)
基于非支配排序遗传算法NSGAII的综合能源优化调度(Matlab代码实现)
|
5天前
|
机器学习/深度学习 算法 安全
【无人机三维路径规划】多目标螳螂搜索算法MOMSA与非支配排序的鲸鱼优化算法NSWOA求解无人机三维路径规划研究(Matlab代码实现)
【无人机三维路径规划】多目标螳螂搜索算法MOMSA与非支配排序的鲸鱼优化算法NSWOA求解无人机三维路径规划研究(Matlab代码实现)
|
6天前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
|
5天前
|
机器学习/深度学习 并行计算 算法
【超级棒的算法改进】融合鱼鹰和柯西变异的麻雀优化算法研究(Matlab代码实现)
【超级棒的算法改进】融合鱼鹰和柯西变异的麻雀优化算法研究(Matlab代码实现)
|
3天前
|
负载均衡 算法 调度
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
56 11
|
3天前
|
机器学习/深度学习 传感器 算法
基于全局路径的无人地面车辆的横向避让路径规划研究[蚂蚁算法求解](Matlab代码实现)
基于全局路径的无人地面车辆的横向避让路径规划研究[蚂蚁算法求解](Matlab代码实现)
|
3天前
|
算法 安全 BI
基于粒子群算法的多码头连续泊位分配优化研究(Matlab代码实现)
基于粒子群算法的多码头连续泊位分配优化研究(Matlab代码实现)
|
3天前
|
存储 并行计算 算法
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)

热门文章

最新文章