帅到爆炸!使用管道 Pipe 编写 Python 代码竟如此简洁

简介: 众所周知,Pytnon 非常擅长处理数据,尤其是后期数据的清洗工作。今天派森酱就给大家介绍一款处理数据的神器 Pipe。

什么是 Pipe


简言之,Pipe 是 Python 的一个三方库。

通过 Pipe 我们可以将一个函数的处理结果传递给另外一个函数,这意味着你的代码会非常简洁。

要使用 Pipe 需要提前安装,直接使用 pip 安装即可。

pip install pipe


过滤元素


和 filter 类似,pipe 中的 where 操作可以过滤可迭代对象中的元素。

In [5]: numbers = [0, 1, 2, 3, 4, 5]
In [6]: list(numbers | where(lambda x: x % 2 == 0))
Out[6]: [0, 2, 4]


作用元素


类似 map,select 操作可以将函数作用于可迭代对象中的每个元素。下面的例子中我们将列表中的元素都扩大 2 倍。

In [8]: list(numbers | select(lambda x: x * 2))
Out[8]: [0, 2, 4, 6, 8, 10]


当然,还可以将多种操作合并在一起来玩。

下面的例子就是将列表中的偶数挑选出来并扩大 2 倍,和 filter 与 map 不同的是,pipe 可以将多个操作连接起来,就像水管套水管一样,所以我想管道这个名字也是很接地气了。


In [10]: list(numbers
    ...:     | where(lambda x: x % 2 == 0)
    ...:     | select(lambda x: x * 2)
    ...:    )
    ...:
Out[10]: [0, 4, 8]


连接元素


操作嵌套列表时非常痛苦,值得高兴的是 pipe 给出了很友好的接口,只需要 chain 一下即可。

In [11]: list([[1, 2], [3, 4], [5]] | chain)
Out[11]: [1, 2, 3, 4, 5]
In [30]: list((1, 2, 3) | chain_with([4, 5], [6]))
Out[30]: [1, 2, 3, 4, 5, 6]
In [31]: list((1, 2, 3) | chain_with([4, 5], [6,[7]]))
Out[31]: [1, 2, 3, 4, 5, 6, [7]]


如你所见,chain 只可以拆开一层,如果要拆开多层嵌套的话,不要慌,traverse 轻松搞定。


In [12]: list([[1, 2], [[[3], [[4]]], [5]]] | traverse)
Out[12]: [1, 2, 3, 4, 5]


结合 select 一起,获取字典中的某个字段属性集合。


In [32]: fruits = [
    ...:     {"name": "apple", "price": [2, 5]},
    ...:     {"name": "orange", "price": 4},
    ...:     {"name": "grape", "price": 5},
    ...: ]
In [33]: list(fruits
    ...:      | select(lambda fruit: fruit["price"])
    ...:      | traverse)
    ...:
Out[33]: [2, 5, 4, 5]


分组


对列表中的元素进行分组是必不可少的,在 pipe 中可以使用 groupby 来完成。


In [26]: list(numbers
    ...:      | groupby(lambda x: 'Even' if x % 2 == 0 else 'Odd')
    ...:      | select(lambda x: {x[0]: list(x[1])})
    ...:     )
    ...:
Out[26]: [{'Even': [0, 2, 4]}, {'Odd': [1, 3, 5]}]

同样,还可以在 select 中添加 where 过滤条件。

In [27]: list(numbers
    ...:      | groupby(lambda x: 'Even' if x % 2 == 0 else 'Odd')
    ...:      | select(lambda x: {x[0]: list(x[1] | where(lambda x: x > 2))})
    ...:     )
    ...:
Out[27]: [{'Even': [4]}, {'Odd': [3, 5]}]


行列互换


数据处理中时常会用到行列互相转换,尤其是在用 DataFrame 时,使用 pipe 一行代码搞定行列转换。


In [24]: [[1, 2, 3], [4, 5, 6], [7, 8, 9]] | transpose
Out[24]: [(1, 4, 7), (2, 5, 8), (3, 6, 9)]


删除元素


对列表去重也是一项常用的操作,在 pipe 中使用 dedup 来对列表进行去重。


In [28]: list([1, 1, 2, 2, 3, 3, 1, 2, 3] | dedup)
Out[28]: [1, 2, 3]


与 dedup 不同的是,uniq 只会对连续的重复元素保留一个,非连续重复元素则不过滤。


In [29]: list([1, 1, 2, 2, 3, 3, 1, 2, 3] | uniq)
Out[29]: [1, 2, 3, 1, 2, 3]


总结

今天派森酱给大家介绍了一个处理数据的神器,使用管道可以让繁琐的操作浓缩在几行甚至一行代码搞定,提高可读性的同时还提升了代码的整洁程度,美滋滋~

目录
相关文章
|
2天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
5天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
1天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
7 1
|
6天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
2天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
4天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
11 2
|
6天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
20 4
|
数据处理 Python
帅到爆炸!使用管道 Pipe 编写 Python 代码竟如此简洁
众所周知,Pytnon 非常擅长处理数据,尤其是后期数据的清洗工作。今天派森酱就给大家介绍一款处理数据的神器 Pipe。
125 0
|
1天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
|
1天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。