妙不可言!写出优雅的 Python 代码的七条重要技巧

简介: 写出能完成功能的程序每个程序员都可以搞定,但能写出优雅的程序的程序员却寥寥无几,因此程序写的优雅与否则是区分顶级程序员与一般程序员的终极指标所在。

写出能完成功能的程序每个程序员都可以搞定,但能写出优雅的程序的程序员却寥寥无几,因此程序写的优雅与否则是区分顶级程序员与一般程序员的终极指标所在。

那身为一名 Pythoner,有哪些技巧能让我们写出优雅的 Python 代码呢,今天派森酱就给大家介绍七个能快速提升代码逼格的重要技巧。


0x00 规范命名

没有哪个程序员会抗拒一段命名规范的代码!

命名作为编程界的一大难题,实属难倒了很多人。不知道你是否还记得自己那些曾经很沙雕的命名呢。


a,b,c  x,y,z a1,a2 4_s,4s... 
def do_something():
def fun():
...


相信你看到上面的命名也是一头雾水,好的命名不一定要写的多优雅,最起码要做到见名识意。统一的命名风格可以让代码看起来更简洁,风格更统一,这样阅读者一看就知道这个变量或者函数是用来干嘛的,不至于猜半天浪费过多的精力在不必要的事情上。


0x01 面向对象

Python 是一门面向对象语言,因此我们有必要熟悉面向对象的一些设计原则。

单一职责原则是指一个函数只做一件事,不要将多个功能集中在同一个函数中,不要大而全,要小而精。这样,当有需求变化时,我们只需要修改对应的部分即可,程序应对变化的能力明显提升。

开放封闭原则是指对扩展开放,对修改关闭。

写程序的都知道,甲方是善变的,今天说用这种方式实现,明天可能就变卦了,这太正常了。所以我们写程序时一定要注意程序的可扩展性,当甲方改动需求时,我们尽可能的少改动或者不改动原有代码,而是通过添加新的实现类来扩展功能,这意味着你系统的原有功能是不会遭到破坏的,则稳定性有极大提升。

接口隔离原则是指调用方不应该依赖其不需要的接口,接口间的依赖关系应当建立在最小功能接口原则之上。

单一职责和接口隔离都是为了提高类的内聚性,降低他们之间的耦合性。这是面向对象封装思想的完美体现。


0x02 使用 with

平时写代码难免会遇到操作文件的需求,一般都是用 open() 函数来打开一个文件,最后等操作完成之后通过 close() 函数来关闭文件,但有时候写多了难免会觉得很麻烦,难道不可以在我操作完自动关闭文件么,可以的。使用 with 来操作文件无需考虑关闭问题,我们只需要关心核心的业务逻辑即可。


with open('tmp.txt', 'w') as f:
    f.write('xxx')
    ...


0x03 使用 get

45.png


当我们从字典中获取一个不存在的 key 时,如果是用中括号的方式来获取的话程序会返回 KeyError。这时候建议通过 get() 函数来获取。

同时通过 get() 函数来获取 value 时还可以设置默认值 default_value,当 key 不存在时则会返回 default_value。


0x04 提前返回

平时写的代码中少不了 if else 等控制语句,但有时候有的小伙伴喜欢将 if else 嵌套好多层,过几个月之后自己都看不明白当时写的啥。

比如下面这个程序,根据考试成绩来做评级。


score = 100
if score >= 60: # 及格
    if score >= 70: # 中等
        if score >= 80: # 良好 
            if score >= 90: # 优秀
                if score >= 100: # 满分
                    print("满分")
                else:
                    print("优秀")
            else:
                print("良好")
        else:
            print("中等")
    else:
        print("及格")
else:
    print("不及格")
print("程序结束")


这种代码一看就想打人有木有,可读性极差。

代码的逻辑就是判断分数是否在一个区间,然后给出与之相匹配的评级,既然如此,则可以改写如下:


def get_score_level(score):
    if score >= 100: # 满分
        print("满分")
        return
    if score >= 90: # 优秀
        print("优秀")
        return
    if score >= 80: # 良好
        print("良好")
        return    
    if score >= 70: # 中等
        print("中等")
        return
    if score >= 60: # 及格
        print("及格")
        return
    print("不及格")
    print("程序结束")

这种处理方式是极其优雅的,从上往下清晰明了,大大增加了代码的可读性和可维护性。


0x05 生成器

我们都知道通过列表生成式可以直接创建一个新的列表,但受机器内存限制,列表的容量肯定是有限的。如果列表里面的数据是通过某种规律推导计算出来的,那是否可以在迭代过程中不断的推算出后面的元素呢,这样就不必一次性创建完整个列表,按需使用即可,这时候生成器就派上用场了。


46.png


0x06 装饰器

试想一下如下的场景,当后端接收到用户请求后,需要对用户进行鉴权,总不能将鉴权的代码复制来复制去吧;还有我们的项目都是需要记录日志的,这两种情况最适合使用装饰器。事实上 Flask 框架中就大量使用装饰器来进行鉴权操作。

一切皆对象!

在 Python 中我们可以在函数中定义函数,也可以从函数中返回函数,还可以将函数作为参数传给另一个函数。


def hi(name="yasoob"):
    print("now you are inside the hi() function")
    def greet():
        return "now you are in the greet() function"
    def welcome():
        return "now you are in the welcome() function"
    print(greet())
    print(welcome())
    print("now you are back in the hi() function")
hi()
# output
# now you are inside the hi() function
# now you are in the greet() function
# now you are in the welcome() function
# now you are back in the hi() function


在上面的代码中,我们在 hi() 函数内部定义了两个新的函数,无论何时调用 hi() 其内部的函数都将会被调用。


def hi(name="yasoob"):
    def greet():
        return "now you are in the greet() function"
    def welcome():
        return "now you are in the welcome() function"
    if name == "yasoob":
        return greet
    else:
        return welcome
a = hi()
print(a)
print(a())
# output
# <function hi.<locals>.greet at 0x7fe3e547a0e0>
# now you are in the greet() function


在这个例子中,由于默认参数 name = yasoob 因此 a = hi() 返回的是 greet 函数。a 也就指向了 hi() 函数内部的 greet() 函数。


def hi():
    return "hi yasoob!"
def doSomethingBeforeHi(func):
    print("I am doing some boring work before executing hi()")
    print(func())
doSomethingBeforeHi(hi)
# output
# I am doing some boring work before executing hi()
# hi yasoob!


在最后这个例子中,我们将 hi() 函数传递给了另外一个函数,并且他们还很愉快的执行了。

现在,让我们来看看 Python 中的装饰器吧。


def a_new_decorator(a_func):
    def wrapTheFunction():
        print("I am doing some boring work before executing a_func()")
        a_func()
        print("I am doing some boring work after executing a_func()")
    return wrapTheFunction
def a_function_requiring_decoration():
    print("I am the function which needs some decoration to remove my foul smell")
a_new_function_requiring_decoration = a_new_decorator(a_function_requiring_decoration)
a_new_function_requiring_decoration()
# output
# I am doing some boring work before executing a_func()
# I am the function which needs some decoration to remove my foul smell
# I am doing some boring work after executing a_func()


看懂了没,就是上面我们介绍的基础操作的组合。事实上这就是 python 中的装饰器所做的事,通过这种方式来修改一个函数的行为。

但如果每次都这么写的话未免也太麻烦了吧,因此 python 为我们提供了一个便捷操作 @


def a_new_decorator(a_func):
  ...
@a_new_decorator
def a_function_requiring_decoration():
    print("I am the function which needs some decoration to remove my foul smell")
a_function_requiring_decoration()
# output
# I am doing some boring work before executing a_func()
# I am the function which needs some decoration to remove my foul smell
# I am doing some boring work after executing a_func()


总结

今天派森酱给大家介绍了几个重要的提升代码逼格的技巧,小伙伴们还有什么独家技巧可以在评论区交流哦~

目录
相关文章
|
2天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
5天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
1天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
7 1
|
6天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
2天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
6天前
|
存储 算法 搜索推荐
Python高手必备!揭秘图(Graph)的N种风骚表示法,让你的代码瞬间高大上
在Python中,图作为重要的数据结构,广泛应用于社交网络分析、路径查找等领域。本文介绍四种图的表示方法:邻接矩阵、邻接表、边列表和邻接集。每种方法都有其特点和适用场景,掌握它们能提升代码效率和可读性,让你在项目中脱颖而出。
18 5
|
4天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
11 2
|
6天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
20 4
|
8天前
|
缓存 开发者 Python
探索Python中的装饰器:简化和增强你的代码
【10月更文挑战第32天】 在编程的世界中,简洁和效率是永恒的追求。Python提供了一种强大工具——装饰器,它允许我们以声明式的方式修改函数的行为。本文将深入探讨装饰器的概念、用法及其在实际应用中的优势。通过实际代码示例,我们不仅理解装饰器的工作方式,还能学会如何自定义装饰器来满足特定需求。无论你是初学者还是有经验的开发者,这篇文章都将为你揭示装饰器的神秘面纱,并展示如何利用它们简化和增强你的代码库。
|
6天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
15 2