眼前一亮!Python 高手都是这样处理数据的!

简介: 工欲善其事,必先利其器!我们想要更轻松更有效率地开发,必须学会一些“高级”技能。前不久看到一位 Python 高僧的代码,其中使用了一个短小精悍的模块,我认为还蛮有用的,今天分享给大家。

工欲善其事,必先利其器!我们想要更轻松更有效率地开发,必须学会一些“高级”技能。前不久看到一位 Python 高僧的代码,其中使用了一个短小精悍的模块,我认为还蛮有用的,今天分享给大家。

这个模块就叫 glom ,是 Python 处理数据的一个小模块,它具有如下特点:

  • 嵌套结构并基于路径访问
  • 使用轻量级的Pythonic规范进行声明性数据转换
  • 可读、有意义的错误信息
  • 内置数据探测和调试功能

看起来比较抽象,对不对?下面我们用实例来给大家演示一下。


安装

作为 Python 内置模块,相信你一定知道怎么安装:

pip3 install glom

几秒钟就搞定!


简单使用

我们来看看最简单的用法:


d = {"a": {"b": {"c": 1}}}
print(glom(d, "a.b.c")) # 1


在这里,我们有一个嵌套三层的 json 结构,我们想获取最里层的 c 对应的值,正常的写法应该是:


print(d["a"]["b"]["c"])


如果到这里,我说 glom 比传统方式好一些,因为你不用一层层地写中括号和引号,你会不会嗤之以鼻?

好,我们再来看看下面的情况:


d = {"a": {"b": None}}
print(d["a"]["b"]["c"])


遍历到一个 None 对象,你会收到下面的错误:


Traceback (most recent call last):
  File "/Users/cxhuan/Documents/python_workspace/mypy/pmodules/pglom/glomstudy.py", line 10, in <module>
    print(d["a"]["b"]["c"])
TypeError: 'NoneType' object is not subscriptable


我们来看看 glom 的处理方式:


from glom import glom
d = {"a": {"b": None}}
print(glom(d, "a.b.c"))


同样地,glom 不能把错误的输出成对的,你会得到以下错误:


Traceback (most recent call last):
  File "/Users/cxhuan/Documents/python_workspace/mypy/pmodules/pglom/glomstudy.py", line 11, in <module>
    print(glom(d, "a.b.c"))
  File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/glom/core.py", line 2181, in glom
    raise err
glom.core.PathAccessError: error raised while processing, details below.
 Target-spec trace (most recent last):
 - Target: {'a': {'b': None}}
 - Spec: 'a.b.c'
glom.core.PathAccessError: could not access 'c', part 2 of Path('a', 'b', 'c'), got error: AttributeError("'NoneType' object has no attribute 'c'")


如果你仔细看报错内容,你就会发现这报错内容极其详细,一目了然,这对于找程序 bug 简直是神器!


复杂用法

刚才简单的例子,让大家对 glom 有了直观的认识,接下来我们看看 glom 的 glom 方法的定义:

glom(target, spec, **kwargs)

我们看看参数的含义:

  • target:目标数据,可以是dict、list或者其他任何对象
  • spec:是我们希望输出的内容

下面我们来使用这个方法。

先看一个例子。我们有一个 dict ,想要获取出 所有 name 的值,我们可以通过 glom 来实现:


data = {"student": {"info": [{"name": "张三"}, {"name": "李四"}]}}
info = glom(data, ("student.info", ["name"]))
print(info) # ['张三', '李四']


如果用传统方式的话,我们可能会需要遍历才能获取到,但是使用 glom ,我们只需要一行代码就可以了,输出是一个数组。

如果你不想输出数组,而是想要一个 dict 的话,那也是很简单的:


info = glom(data, {"info": ("student.info", ["name"])})
print(info) # {'info': ['张三', '李四']


我们只需要将原来的数组赋值给一个字典来接收就好了。


搞定麻烦需求

假如我现在有两组数据,我要取出 name 的值:


data_1 = {"school": {"student": [{"name": "张三"}, {"name": "李四"}]}}
data_2 = {"school": {"teacher": [{"name": "王老师"}, {"name": "赵老师"}]}}
spec_1 = {"name": ("school.student", ["name"])}
spec_2 = {"name": ("school.teacher", ["name"])}
print(glom(data_1, spec_1)) # {'name': ['张三', '李四']}
print(glom(data_2, spec_2)) # {'name': ['王老师', '赵老师']}


我们通常是这么写,对吗?假如我们有好多组数据,每组都是类似的取法呢?这时候我们就会想办法避免一个个重复写 N 行参数了,我们可以使用 Coalesce 方法:


data_1 = {"school": {"student": [{"name": "张三"}, {"name": "李四"}]}}
data_2 = {"school": {"teacher": [{"name": "王老师"}, {"name": "赵老师"}]}}
spec = {"name": (Coalesce("school.student", "school.teacher"), ["name"])}
print(glom(data_1, spec)) # {'name': ['张三', '李四']}
print(glom(data_2, spec)) # {'name': ['王老师', '赵老师']}


我们可以用 Coalesce 把多个需求聚合起来,然后针对同一个 spec 来取值就行了。

下面再来一个大杀器——取值计算。glom 还可以对取值进行简单计算,我们来看例子:


data = {"school": {"student": [{"name": "张三", "age": 8}, {"name": "李四", "age": 10}]}}
spec = {"sum_age": ("school.student", ["age"], sum)}
print(glom(data, spec)) # {'sum_age': 18}


总结

介绍了这么多,大家应该知道 glom 的厉害之处了吧,据说很多大佬都喜欢使用呢。其实它还有很多其他的实用功能有待大家去发掘,这里就不一一介绍了。如果你觉得今天分享的模块有用,点个“在看”支持一下吧!

目录
相关文章
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
6天前
|
数据采集 数据安全/隐私保护 Python
从零开始:用Python爬取网站的汽车品牌和价格数据
在现代化办公室中,工程师小李和产品经理小张讨论如何获取懂车帝网站的汽车品牌和价格数据。小李提出使用Python编写爬虫,并通过亿牛云爬虫代理避免被封禁。代码实现包括设置代理、请求头、解析网页内容、多线程爬取等步骤,确保高效且稳定地抓取数据。小张表示理解并准备按照指导操作。
从零开始:用Python爬取网站的汽车品牌和价格数据
|
1月前
|
数据采集 Web App开发 数据可视化
Python用代理IP获取抖音电商达人主播数据
在当今数字化时代,电商直播成为重要的销售模式,抖音电商汇聚了众多达人主播。了解这些主播的数据对于品牌和商家至关重要。然而,直接从平台获取数据并非易事。本文介绍如何使用Python和代理IP高效抓取抖音电商达人主播的关键数据,包括主播昵称、ID、直播间链接、观看人数、点赞数和商品列表等。通过环境准备、代码实战及数据处理与可视化,最终实现定时任务自动化抓取,为企业决策提供有力支持。
|
2月前
|
数据采集 存储 XML
python实战——使用代理IP批量获取手机类电商数据
本文介绍了如何使用代理IP批量获取华为荣耀Magic7 Pro手机在电商网站的商品数据,包括名称、价格、销量和用户评价等。通过Python实现自动化采集,并存储到本地文件中。使用青果网络的代理IP服务,可以提高数据采集的安全性和效率,确保数据的多样性和准确性。文中详细描述了准备工作、API鉴权、代理授权及获取接口的过程,并提供了代码示例,帮助读者快速上手。手机数据来源为京东(item.jd.com),代理IP资源来自青果网络(qg.net)。
|
2月前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
2月前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
2月前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
305 10
|
3月前
|
传感器 物联网 开发者
使用Python读取串行设备的温度数据
本文介绍了如何使用Python通过串行接口(如UART、RS-232或RS-485)读取温度传感器的数据。详细步骤包括硬件连接、安装`pyserial`库、配置串行端口、发送请求及解析响应等。适合嵌入式系统和物联网应用开发者参考。
92 3
|
3月前
|
数据采集 JavaScript 程序员
探索CSDN博客数据:使用Python爬虫技术
本文介绍了如何利用Python的requests和pyquery库爬取CSDN博客数据,包括环境准备、代码解析及注意事项,适合初学者学习。
154 0
|
3月前
|
数据采集 存储 分布式计算
超酷炫Python技术:交通数据的多维度分析
超酷炫Python技术:交通数据的多维度分析

热门文章

最新文章

推荐镜像

更多