java实现人脸识别

简介: 深度学习框架jdl+javacv+向量引擎实现人脸识别

人脸识别定义

人脸识别系统主要包括四个组成部分,分别为:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。

本文图片及学习代码来源,更多可前往

实现人脸识别流程

image.png

代码结构

image.png

代码实现

一、构建springboot项目添加pom依赖

<properties>
       <jna.version>5.6.0</jna.version>
       <djl.version>0.11.0</djl.version>
       <java.version>1.8</java.version>
       <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
       <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
       <maven.compiler.encoding>UTF-8</maven.compiler.encoding>
   </properties>


<!-- 线性代数库 -->
       <dependency>
           <groupId>gov.nist.math</groupId>
           <artifactId>jama</artifactId>
           <version>1.0.3</version>
       </dependency>

       <dependency>
           <groupId>net.java.dev.jna</groupId>
           <artifactId>jna</artifactId>
           <version>${jna.version}</version>
       </dependency>

       <dependency>
           <groupId>junit</groupId>
           <artifactId>junit</artifactId>
           <version>4.12</version>
           <scope>test</scope>
       </dependency>

       <dependency>
           <groupId>org.bytedeco</groupId>
           <artifactId>opencv-platform</artifactId>
           <version>4.5.1-1.5.5</version>
       </dependency>

       <dependency>
           <groupId>org.bytedeco</groupId>
           <artifactId>javacv</artifactId>
           <version>1.5.5</version>
       </dependency>

       <dependency>
           <groupId>org.bytedeco</groupId>
           <artifactId>javacv-platform</artifactId>
           <version>1.5.5</version>
       </dependency>

       <dependency>
           <groupId>com.alibaba</groupId>
           <artifactId>fastjson</artifactId>
           <version>1.2.62</version>
       </dependency>



       <!-- Start DJL -->
       <dependency>
           <groupId>ai.djl</groupId>
           <artifactId>api</artifactId>
           <version>${djl.version}</version>
       </dependency>

       <!-- PyTorch -->
       <dependency>
           <groupId>ai.djl.pytorch</groupId>
           <artifactId>pytorch-model-zoo</artifactId>
           <version>${djl.version}</version>
       </dependency>
       <dependency>
           <groupId>ai.djl.pytorch</groupId>
           <artifactId>pytorch-engine</artifactId>
           <version>${djl.version}</version>
       </dependency>
       <dependency>
           <groupId>ai.djl.pytorch</groupId>
           <artifactId>pytorch-native-auto</artifactId>
           <version>1.8.1</version>
       </dependency>

二、创建转换器

package com.xgc.aideep.face.translator;

import ai.djl.modality.cv.Image;
import ai.djl.modality.cv.output.*;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDArrays;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.NDManager;
import ai.djl.ndarray.types.DataType;
import ai.djl.ndarray.types.Shape;
import ai.djl.translate.Batchifier;
import ai.djl.translate.Translator;
import ai.djl.translate.TranslatorContext;

import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

/**
 * @author gc.x
 * @date 2022-04
 */
public class FaceDetectionTranslator implements Translator<Image, DetectedObjects> {

    private double confThresh;
    private double nmsThresh;
    private int topK;
    private double[] variance;
    private int[][] scales;
    private int[] steps;
    private int width;
    private int height;

    public FaceDetectionTranslator(
            double confThresh,
            double nmsThresh,
            double[] variance,
            int topK,
            int[][] scales,
            int[] steps) {
        this.confThresh = confThresh;
        this.nmsThresh = nmsThresh;
        this.variance = variance;
        this.topK = topK;
        this.scales = scales;
        this.steps = steps;
    }

    /**
     * {@inheritDoc}
     */
    @Override
    public NDList processInput(TranslatorContext ctx, Image input) {
        width = input.getWidth();
        height = input.getHeight();
        NDArray array = input.toNDArray(ctx.getNDManager(), Image.Flag.COLOR);
        array = array.transpose(2, 0, 1).flip(0); // HWC -> CHW RGB -> BGR
        // The network by default takes float32
        if (!array.getDataType().equals(DataType.FLOAT32)) {
            array = array.toType(DataType.FLOAT32, false);
        }
        NDArray mean =
                ctx.getNDManager().create(new float[]{104f, 117f, 123f}, new Shape(3, 1, 1));
        array = array.sub(mean);
        return new NDList(array);
    }

    /**
     * {@inheritDoc}
     */
    @Override
    public DetectedObjects processOutput(TranslatorContext ctx, NDList list) {
        NDManager manager = ctx.getNDManager();
        double scaleXY = variance[0];
        double scaleWH = variance[1];

        NDArray prob = list.get(1).get(":, 1:");
        prob =
                NDArrays.stack(
                        new NDList(
                                prob.argMax(1).toType(DataType.FLOAT32, false),
                                prob.max(new int[]{1})));

        NDArray boxRecover = boxRecover(manager, width, height, scales, steps);
        NDArray boundingBoxes = list.get(0);
        NDArray bbWH = boundingBoxes.get(":, 2:").mul(scaleWH).exp().mul(boxRecover.get(":, 2:"));
        NDArray bbXY =
                boundingBoxes
                        .get(":, :2")
                        .mul(scaleXY)
                        .mul(boxRecover.get(":, 2:"))
                        .add(boxRecover.get(":, :2"))
                        .sub(bbWH.mul(0.5f));

        boundingBoxes = NDArrays.concat(new NDList(bbXY, bbWH), 1);

        NDArray landms = list.get(2);
        landms = decodeLandm(landms, boxRecover, scaleXY);

        // filter the result below the threshold
        NDArray cutOff = prob.get(1).gt(confThresh);
        boundingBoxes = boundingBoxes.transpose().booleanMask(cutOff, 1).transpose();
        landms = landms.transpose().booleanMask(cutOff, 1).transpose();
        prob = prob.booleanMask(cutOff, 1);

        // start categorical filtering
        long[] order = prob.get(1).argSort().get(":" + topK).toLongArray();
        prob = prob.transpose();
        List<String> retNames = new ArrayList<>();
        List<Double> retProbs = new ArrayList<>();
        List<BoundingBox> retBB = new ArrayList<>();

        Map<Integer, List<BoundingBox>> recorder = new ConcurrentHashMap<>();

        for (int i = order.length - 1; i >= 0; i--) {
            long currMaxLoc = order[i];
            float[] classProb = prob.get(currMaxLoc).toFloatArray();
            int classId = (int) classProb[0];
            double probability = classProb[1];

            double[] boxArr = boundingBoxes.get(currMaxLoc).toDoubleArray();
            double[] landmsArr = landms.get(currMaxLoc).toDoubleArray();
            Rectangle rect = new Rectangle(boxArr[0], boxArr[1], boxArr[2], boxArr[3]);
            List<BoundingBox> boxes = recorder.getOrDefault(classId, new ArrayList<>());
            boolean belowIoU = true;
            for (BoundingBox box : boxes) {
                if (box.getIoU(rect) > nmsThresh) {
                    belowIoU = false;
                    break;
                }
            }
            if (belowIoU) {
                List<Point> keyPoints = new ArrayList<>();
                for (int j = 0; j < 5; j++) { // 5 face landmarks
                    double x = landmsArr[j * 2];
                    double y = landmsArr[j * 2 + 1];
                    keyPoints.add(new Point(x * width, y * height));
                }
                Landmark landmark =
                        new Landmark(boxArr[0], boxArr[1], boxArr[2], boxArr[3], keyPoints);

                boxes.add(landmark);
                recorder.put(classId, boxes);
                String className = "Face"; // classes.get(classId)
                retNames.add(className);
                retProbs.add(probability);
                retBB.add(landmark);
            }
        }

        return new DetectedObjects(retNames, retProbs, retBB);
    }

    private NDArray boxRecover(
            NDManager manager, int width, int height, int[][] scales, int[] steps) {
        int[][] aspectRatio = new int[steps.length][2];
        for (int i = 0; i < steps.length; i++) {
            int wRatio = (int) Math.ceil((float) width / steps[i]);
            int hRatio = (int) Math.ceil((float) height / steps[i]);
            aspectRatio[i] = new int[]{hRatio, wRatio};
        }

        List<double[]> defaultBoxes = new ArrayList<>();

        for (int idx = 0; idx < steps.length; idx++) {
            int[] scale = scales[idx];
            for (int h = 0; h < aspectRatio[idx][0]; h++) {
                for (int w = 0; w < aspectRatio[idx][1]; w++) {
                    for (int i : scale) {
                        double skx = i * 1.0 / width;
                        double sky = i * 1.0 / height;
                        double cx = (w + 0.5) * steps[idx] / width;
                        double cy = (h + 0.5) * steps[idx] / height;
                        defaultBoxes.add(new double[]{cx, cy, skx, sky});
                    }
                }
            }
        }

        double[][] boxes = new double[defaultBoxes.size()][defaultBoxes.get(0).length];
        for (int i = 0; i < defaultBoxes.size(); i++) {
            boxes[i] = defaultBoxes.get(i);
        }
        return manager.create(boxes).clip(0.0, 1.0);
    }

    // decode face landmarks, 5 points per face
    private NDArray decodeLandm(NDArray pre, NDArray priors, double scaleXY) {
        NDArray point1 =
                pre.get(":, :2").mul(scaleXY).mul(priors.get(":, 2:")).add(priors.get(":, :2"));
        NDArray point2 =
                pre.get(":, 2:4").mul(scaleXY).mul(priors.get(":, 2:")).add(priors.get(":, :2"));
        NDArray point3 =
                pre.get(":, 4:6").mul(scaleXY).mul(priors.get(":, 2:")).add(priors.get(":, :2"));
        NDArray point4 =
                pre.get(":, 6:8").mul(scaleXY).mul(priors.get(":, 2:")).add(priors.get(":, :2"));
        NDArray point5 =
                pre.get(":, 8:10").mul(scaleXY).mul(priors.get(":, 2:")).add(priors.get(":, :2"));
        return NDArrays.concat(new NDList(point1, point2, point3, point4, point5), 1);
    }

    /**
     * {@inheritDoc}
     */
    @Override
    public Batchifier getBatchifier() {
        return Batchifier.STACK;
    }
}
package com.xgc.aideep.face.translator;

import ai.djl.modality.cv.Image;
import ai.djl.modality.cv.transform.Normalize;
import ai.djl.modality.cv.transform.ToTensor;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.translate.Batchifier;
import ai.djl.translate.Pipeline;
import ai.djl.translate.Translator;
import ai.djl.translate.TranslatorContext;

/**
 * @author gc.x
 * @date 2022-04
 */
public final class FaceFeatureTranslator implements Translator<Image, float[]> {

    public FaceFeatureTranslator() {
    }

    @Override
    public NDList processInput(TranslatorContext ctx, Image input) {
        NDArray array = input.toNDArray(ctx.getNDManager(), Image.Flag.COLOR);
        Pipeline pipeline = new Pipeline();
        pipeline
                // .add(new Resize(160))
                .add(new ToTensor())
                .add(
                        new Normalize(
                                new float[]{127.5f / 255.0f, 127.5f / 255.0f, 127.5f / 255.0f},
                                new float[]{128.0f / 255.0f, 128.0f / 255.0f, 128.0f / 255.0f}));

        return pipeline.transform(new NDList(array));
    }

    @Override
    public float[] processOutput(TranslatorContext ctx, NDList list) {
        NDList result = new NDList();
        long numOutputs = list.singletonOrThrow().getShape().get(0);
        for (int i = 0; i < numOutputs; i++) {
            result.add(list.singletonOrThrow().get(i));
        }
        float[][] embeddings = result.stream().map(NDArray::toFloatArray).toArray(float[][]::new);
        float[] feature = new float[embeddings.length];
        for (int i = 0; i < embeddings.length; i++) {
            feature[i] = embeddings[i][0];
        }
        return feature;
    }

    @Override
    public Batchifier getBatchifier() {
        return Batchifier.STACK;
    }
}

三、加载模型


package com.xgc.aideep.face.model;

import ai.djl.MalformedModelException;
import ai.djl.modality.cv.Image;
import ai.djl.modality.cv.output.DetectedObjects;
import ai.djl.repository.zoo.Criteria;
import ai.djl.repository.zoo.ModelNotFoundException;
import ai.djl.repository.zoo.ModelZoo;
import ai.djl.repository.zoo.ZooModel;
import ai.djl.training.util.ProgressBar;
import com.xgc.aideep.face.translator.FaceDetectionTranslator;

import java.io.IOException;

/**
 * @author gc.x
 * @date 2022-04
 */
public final class FaceDetectionModel {
    private ZooModel<Image, DetectedObjects> model;

    private static String model_path = "models/ultranet.zip";

    public void init(int topK, double confThresh, double nmsThresh) throws MalformedModelException, ModelNotFoundException, IOException {
        this.model = ModelZoo.loadModel(detectCriteria(topK, confThresh, nmsThresh));
    }

    public ZooModel<Image, DetectedObjects> getModel() {
        return model;
    }

    public void close() {
        this.model.close();
    }

    private Criteria<Image, DetectedObjects> detectCriteria(int topK, double confThresh, double nmsThresh) {
        double[] variance = {0.1f, 0.2f};

        int[][] scales = {{10, 16, 24}, {32, 48}, {64, 96}, {128, 192, 256}};
        int[] steps = {8, 16, 32, 64};

        FaceDetectionTranslator translator =
                new FaceDetectionTranslator(confThresh, nmsThresh, variance, topK, scales, steps);

        Criteria<Image, DetectedObjects> criteria =
                Criteria.builder()
                        .setTypes(Image.class, DetectedObjects.class)
                        .optModelUrls(model_path)
                        .optTranslator(translator)
                        .optEngine("PyTorch") // Use PyTorch engine
                        .optProgress(new ProgressBar())
                        .build();
        return criteria;
    }

}
package com.xgc.aideep.face.model;

import ai.djl.MalformedModelException;
import ai.djl.modality.cv.Image;
import ai.djl.repository.zoo.Criteria;
import ai.djl.repository.zoo.ModelNotFoundException;
import ai.djl.repository.zoo.ModelZoo;
import ai.djl.repository.zoo.ZooModel;
import ai.djl.training.util.ProgressBar;
import com.xgc.aideep.face.translator.FaceFeatureTranslator;

import java.io.IOException;

/**
 * @author gc.x
 * @date 2022-04
 */
public final class FaceFeatureModel {
    private ZooModel<Image, float[]> model;

    private static String model_path = "models/face_feature.zip";

    public void init() throws MalformedModelException, ModelNotFoundException, IOException {
        this.model = ModelZoo.loadModel(detectCriteria());
    }

    public ZooModel<Image, float[]> getModel() {
        return model;
    }

    public void close() {
        this.model.close();
    }

    private Criteria<Image, float[]> detectCriteria() {

        Criteria<Image, float[]> criteria =
                Criteria.builder()
                        .setTypes(Image.class, float[].class)
                        .optModelName("face_feature") // specify model file prefix
                        .optModelUrls(model_path)
                        .optTranslator(new FaceFeatureTranslator())
                        .optEngine("PyTorch") // Use PyTorch engine
                        .optProgress(new ProgressBar())
                        .build();
        return criteria;
    }

}

四、目标检测

package com.xgc.aideep.face.service.impl;

import ai.djl.ModelException;
import ai.djl.inference.Predictor;
import ai.djl.modality.cv.Image;
import ai.djl.modality.cv.ImageFactory;
import ai.djl.modality.cv.output.BoundingBox;
import ai.djl.modality.cv.output.DetectedObjects;
import ai.djl.modality.cv.output.Point;
import ai.djl.modality.cv.output.Rectangle;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDManager;
import ai.djl.repository.zoo.ZooModel;
import ai.djl.translate.TranslateException;
import com.xgc.aideep.face.entity.FaceObject;
import com.xgc.aideep.face.model.FaceDetectionModel;
import com.xgc.aideep.face.service.FaceDetectService;
import com.xgc.aideep.face.service.FaceFeatureService;
import com.xgc.aideep.face.util.*;
import lombok.RequiredArgsConstructor;
import lombok.extern.slf4j.Slf4j;
import org.bytedeco.javacv.Java2DFrameUtils;
import org.bytedeco.opencv.opencv_core.Mat;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import java.awt.image.BufferedImage;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

/**
 * 目标检测服务
 *
 * @author gc.x
 * @date 2022-04
 */
@Slf4j
@RequiredArgsConstructor
@Service
public class DetectServiceImpl implements FaceDetectService {

    @Autowired
    private FaceFeatureService featureService;

    @Autowired
    private FaceDetectionModel faceDetectionModel;

    public List<FaceObject> faceDetect(BufferedImage image)
            throws IOException, ModelException, TranslateException {
        ZooModel<Image, DetectedObjects> model = faceDetectionModel.getModel();
        try (Predictor<Image, DetectedObjects> predictor = model.newPredictor()) {
            Image djlImg = ImageFactory.getInstance().fromImage(image);
            DetectedObjects detections = predictor.predict(djlImg);
            List<DetectedObjects.DetectedObject> list = detections.items();

            List<FaceObject> faceObjects = new ArrayList<>();
            for (DetectedObjects.DetectedObject detectedObject : list) {
                BoundingBox box = detectedObject.getBoundingBox();
                Rectangle rectangle = box.getBounds();

                // 抠人脸图
                Rectangle subImageRect =
                        FaceUtil.getSubImageRect(
                                image, rectangle, djlImg.getWidth(), djlImg.getHeight(), 0f);
                int x = (int) (subImageRect.getX());
                int y = (int) (subImageRect.getY());
                int w = (int) (subImageRect.getWidth());
                int h = (int) (subImageRect.getHeight());
                BufferedImage subImage = image.getSubimage(x, y, w, h);
                Image img = DJLImageUtil.bufferedImage2DJLImage(subImage);
                //获取特征向量
                List<Float> feature = featureService.faceFeature(img);

                FaceObject faceObject = new FaceObject();
                faceObject.setFeature(feature);
                faceObject.setBoundingBox(subImageRect);
                faceObjects.add(faceObject);
            }

            return faceObjects;
        }
    }

    public List<FaceObject> faceDetect(Image djlImg) throws TranslateException, ModelException, IOException {
        ZooModel<Image, DetectedObjects> model = faceDetectionModel.getModel();
        try (Predictor<Image, DetectedObjects> predictor = model.newPredictor()) {
            DetectedObjects detections = predictor.predict(djlImg);
            List<DetectedObjects.DetectedObject> list = detections.items();
            BufferedImage image = (BufferedImage) djlImg.getWrappedImage();
            List<FaceObject> faceObjects = new ArrayList<>();

            for (DetectedObjects.DetectedObject detectedObject : list) {
                BoundingBox box = detectedObject.getBoundingBox();
                Rectangle rectangle = box.getBounds();

                // 抠人脸图
                // factor = 0.1f, 意思是扩大10%,防止人脸仿射变换后,人脸被部分截掉
                Rectangle subImageRect =
                        FaceUtil.getSubImageRect(
                                image, rectangle, djlImg.getWidth(), djlImg.getHeight(), 1.0f);
                int x = (int) (subImageRect.getX());
                int y = (int) (subImageRect.getY());
                int w = (int) (subImageRect.getWidth());
                int h = (int) (subImageRect.getHeight());
                BufferedImage subImage = image.getSubimage(x, y, w, h);

                // 计算人脸关键点在子图中的新坐标
                List<Point> points = (List<Point>) box.getPath();
                double[][] pointsArray = FaceUtil.pointsArray(subImageRect, points);

                // 转 buffered image 图片格式
                BufferedImage converted3BGRsImg =
                        new BufferedImage(
                                subImage.getWidth(), subImage.getHeight(), BufferedImage.TYPE_3BYTE_BGR);
                converted3BGRsImg.getGraphics().drawImage(subImage, 0, 0, null);

                Mat mat = Java2DFrameUtils.toMat(converted3BGRsImg);

                try (NDManager manager = NDManager.newBaseManager()) {
                    NDArray srcPoints = manager.create(pointsArray);
                    NDArray dstPoints = SVDUtil.point112x112(manager);

                    // 定制的5点仿射变换
                    Mat svdMat = NDArrayUtil.toOpenCVMat(manager, srcPoints, dstPoints);
                    // 换仿射变换矩阵
                    mat = FaceAlignment.get5WarpAffineImg(mat, svdMat);

                    // mat转bufferedImage类型
                    BufferedImage mat2BufferedImage = OpenCVImageUtil.mat2BufferedImage(mat);
                    int width = mat2BufferedImage.getWidth() > 112 ? 112 : mat2BufferedImage.getWidth();
                    int height = mat2BufferedImage.getHeight() > 112 ? 112 : mat2BufferedImage.getHeight();
                    mat2BufferedImage = mat2BufferedImage.getSubimage(0, 0, width, height);

                    Image img = DJLImageUtil.bufferedImage2DJLImage(mat2BufferedImage);
                    //获取特征向量
                    List<Float> feature = featureService.faceFeature(img);

                    FaceObject faceObject = new FaceObject();
                    faceObject.setFeature(feature);
                    faceObject.setBoundingBox(subImageRect);
                    faceObject.setScore((float) detectedObject.getProbability());
                    faceObjects.add(faceObject);

                }
            }

            return faceObjects;
        }
    }
}

五、特征提取

package com.xgc.aideep.face.service.impl;

import ai.djl.inference.Predictor;
import ai.djl.modality.cv.Image;
import ai.djl.repository.zoo.ZooModel;
import ai.djl.translate.TranslateException;
import com.xgc.aideep.face.model.FaceFeatureModel;
import com.xgc.aideep.face.service.FaceFeatureService;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import java.util.ArrayList;
import java.util.List;

/**
 * 特征提取服务
 * @author gc.x
 * @date 2022-04
 */
@Slf4j
@Service
public class FeatureServiceImpl implements FaceFeatureService {
    @Autowired
    private FaceFeatureModel faceFeatureModel;

    public List<Float> faceFeature(Image img) throws TranslateException {
        ZooModel<Image, float[]> model = faceFeatureModel.getModel();
        try (Predictor<Image, float[]> predictor = model.newPredictor()) {
            float[] embeddings = predictor.predict(img);
            List<Float> feature = new ArrayList<>();
            if (embeddings != null) {
                for (int i = 0; i < embeddings.length; i++) {
                    feature.add(embeddings[i]);
                }
            } else {
                return null;
            }
            return feature;
        }
    }
}

六、特征比对(存储)

使用向量引擎milvus存储获取的人脸特征,业务人脸识别

image.png

七、源代码开源地址

https://gitee.com/giteeClass/ai-face

目录
相关文章
|
6月前
|
Java 计算机视觉
java实现人脸识别源码【含测试效果图】——前台页面层(login.jsp)
java实现人脸识别源码【含测试效果图】——前台页面层(login.jsp)
|
6月前
|
传感器 人工智能 前端开发
JAVA语言VUE2+Spring boot+MySQL开发的智慧校园系统源码(电子班牌可人脸识别)Saas 模式
智慧校园电子班牌,坐落于班级的门口,适合于各类型学校的场景应用,班级学校日常内容更新可由班级自行管理,也可由学校统一管理。让我们一起看看,电子班牌有哪些功能呢?
551 4
JAVA语言VUE2+Spring boot+MySQL开发的智慧校园系统源码(电子班牌可人脸识别)Saas 模式
|
6月前
|
Java 计算机视觉
java实现人脸识别源码【含测试效果图】——前台显示层(index.jsp)
java实现人脸识别源码【含测试效果图】——前台显示层(index.jsp)
|
6月前
|
Java 计算机视觉
java实现人脸识别源码【含测试效果图】——Servlet层(FaceServlet)
java实现人脸识别源码【含测试效果图】——Servlet层(FaceServlet)
|
6月前
|
Java 计算机视觉
java实现人脸识别源码【含测试效果图】——ServiceImpl层(UserServiceImpl)
java实现人脸识别源码【含测试效果图】——ServiceImpl层(UserServiceImpl)
|
6月前
|
Java 计算机视觉
java实现人脸识别源码【含测试效果图】——Service层(IUserService)
java实现人脸识别源码【含测试效果图】——Service层(IUserService)
|
6月前
|
Java API 计算机视觉
java实现人脸识别V3版本开发
java实现人脸识别V3版本开发
|
6月前
|
弹性计算 Java PHP
新手用户注册阿里云账号、实名认证、购买云服务器图文教程参考
对于初次购买阿里云产品的用户来说,第一步要做的是注册账号并完成实名认证,然后才是购买阿里云服务器或者其他云产品,本文为大家以图文形式展示一下新手用户从注册阿里云账号、实名认证到购买云服务器完整详细教程,以供参考。
新手用户注册阿里云账号、实名认证、购买云服务器图文教程参考
|
5月前
|
文字识别 算法 API
视觉智能开放平台产品使用合集之uniapp框架如何使用阿里云金融级人脸识别
视觉智能开放平台是指提供一系列基于视觉识别技术的API和服务的平台,这些服务通常包括图像识别、人脸识别、物体检测、文字识别、场景理解等。企业或开发者可以通过调用这些API,快速将视觉智能功能集成到自己的应用或服务中,而无需从零开始研发相关算法和技术。以下是一些常见的视觉智能开放平台产品及其应用场景的概览。
133 0

热门文章

最新文章