二叉排序树(BST)优秀树结构的基石

简介: 二叉排序树(BST)优秀树结构的基石

二叉排序树

先看一个需求:


给你一个数列 (7, 3, 10, 12, 5, 1, 9),要求能够高效的完成对数据的查询和添加


使用数组


数组未排序, 优点:直接在数组尾添加,速度快。 缺点:查找速度慢.


数组排序,优点:可以使用二分查找,查找速度快,缺点:为了保证数组有序,在添加新数据时,找到插入位


置后,后面的数据需整体移动,速度慢。


链式存储-链表


不管链表是否有序,查找速度都慢,添加数据速度比数组快,不需要数据整体移动。


二叉排序树介绍

二叉排序树:BST: (Binary Sort(Search) Tree), 对于二叉排序树的任何一个非叶子节点,要求左子节点的值比当 前节点的值小,右子节点的值比当前节点的值大。


特别声明


特别说明:如果有相同的值,可以将该节点放在左子节点或右子节点


比如针对前面的数据 (7, 3, 10, 12, 5, 1, 9) ,对应的二叉排序树为:

2.png



二叉排序树创建和遍历

一个数组创建成对应的二叉排序树,并使用中序遍历二叉排序树,比如: 数组为 Array(7, 3, 10, 12, 5, 1, 9) , 创


建成对应的二叉排序树为 :

3.png



二叉排序树的删除

二叉排序树的删除情况比较复杂,有下面三种情况需要考虑


删除叶子节点 (比如:2, 5, 9, 12)

删除只有一颗子树的节点 (比如:1)

删除有两颗子树的节点. (比如:7, 3,10 )

4.png


对删除结点的各种情况的思路分析:


第一种情况: 删除叶子节点 (比如:2, 5, 9, 12)


思路:

需求先去找到要删除的结点 targetNode

找到 targetNode 的 父结点 parent

确定 targetNode 是 parent 的左子结点 还是右子结点

根据前面的情况来对应删除

左子结点 parent.left = null

右子结点 parent.right = null;


第二种情况: 删除只有一颗子树的节点 比如 1


思路 :


需求先去找到要删除的结点 targetNode

找到 targetNode 的 父结点 parent

确定 targetNode 的子结点是左子结点还是右子结点

targetNode 是 parent 的左子结点还是右子结点

如果 targetNode 有左子结点

如果 targetNode 是 parent 的左子结点 parent.left = targetNode.left;

如果 targetNode 是 parent 的右子结点 parent.right = targetNode.left;

如果 targetNode 有右子结点

如果 targetNode 是 parent 的左子结点 parent.left = targetNode.right

如果 targetNode 是 parent 的右子结点 parent.right = targetNode.right

情况三 : 删除有两颗子树的节点. (比如:7, 3,10 )


思路 :


需求先去找到要删除的结点 targetNode

找到 targetNode 的 父结点 parent

从 targetNode 的右子树找到最小的结点

用一个临时变量,将 最小结点的值保存 temp = 11

删除该最小结点

targetNode.value = temp

二叉排序树代码实现

package com.hyc.DataStructure.binarysorttree;
/**
 * @projectName: DataStructure
 * @package: com.hyc.DataStructure.binarysorttree
 * @className: BinarySortDemo
 * @author: 冷环渊 doomwatcher
 * @description: TODO
 * @date: 2022/2/15 16:33
 * @version: 1.0
 */
public class BinarySortDemo {
    public static void main(String[] args) {
        int[] arr = {7, 3, 10, 12, 5, 1, 9, 2};
        BinarySortTree binarySortTree = new BinarySortTree();
        for (int i = 0; i < arr.length; i++) {
            binarySortTree.add(new Node(arr[i]));
        }
        //    中序要遍历
        binarySortTree.infixOrder();
        //    测试删除节点
        binarySortTree.delNode(2);
        binarySortTree.delNode(7);
        binarySortTree.delNode(3);
        binarySortTree.delNode(12);
        binarySortTree.delNode(5);
        binarySortTree.delNode(1);
        binarySortTree.delNode(9);
        binarySortTree.delNode(10);
        System.out.println("删除节点后");
        //    中序要遍历
        binarySortTree.infixOrder();
    }
}
class BinarySortTree {
    private Node root;
    //查找要删除的节点
    public Node search(int value) {
        if (root == null) {
            return null;
        } else {
            return root.search(value);
        }
    }
    //查找父节点·
    public Node searchParent(int value) {
        if (root == null) {
            return null;
        } else {
            return root.searchParent(value);
        }
    }
    //删除节点方法
    public void delNode(int value) {
        if (root == null) {
            return;
        } else {
            //    需要先去找到要删除的节点,targetNode
            Node targetNode = search(value);
            //    如果没有找到要删除的节点
            if (targetNode == null) {
                return;
            }
            //  如果我们发现当前这个颗树 只有一个节点
            if (root.left == null && root.right == null) {
                root = null;
                return;
            }
            //    找到targetNode的父节点
            Node parent = searchParent(value);
            //    如果需要删除的节点是叶子节点
            if (targetNode.left == null && targetNode.right == null) {
                //    判断targetNode是父节点的左子节点还是右子节点
                if (parent.left != null && parent.left.value == value) {
                    parent.left = null;
                } else if (parent.right != null && parent.right.value == value) {
                    parent.right = null;
                }
            } else if (targetNode.left != null && targetNode.right != null) {
                //    删除有两颗子树的节点
                int minVal = delRightTreeMin(targetNode.right);
                targetNode.value = minVal;
            } else {
                //    删除有一颗子树
                //    如果要删除的节点有左子节点
                if (targetNode.left != null) {
                    //判断 parent 的非空判断
                    if (parent != null) {
                        //    如果targetNode是Parent的左子节点
                        if (parent.left.value == value) {
                            parent.left = targetNode.left;
                        } else {
                            //targentNode 是parent右子节点
                            parent.right = targetNode.left;
                        }
                    } else {
                        root = targetNode.left;
                    }
                } else {
                    if (parent != null) {
                        //    如果要删除的节点有右子节点
                        //    如果targetNode 是parent的右子节点
                        if (parent.left.value == value) {
                            parent.left = targetNode.right;
                        } else {
                            parent.right = targetNode.right;
                        }
                    } else {
                        root = targetNode.right;
                    }
                }
            }
        }
    }
    /**
     * @author 冷环渊 Doomwatcher
     * @context:
     * 返回的以node为根节点的二叉树的最小节点值
     * 删除node 为根节点的二叉排序树的最小节点
     * @date: 2022/2/17 22:19
     * @param node 传入的节点 (当前二叉排序树树的根节点)
     * @return: int 返回的以node为根节点的二叉排序树的最小节点值
     */
    public int delRightTreeMin(Node node) {
        Node target = node;
        //    循环查找左节点 就会找到最小值
        while (target.left != null) {
            target = target.left;
        }
        //这个target就指向了最小的节点
        //删除最小节点
        delNode(target.value);
        return target.value;
    }
    //    添加节点的方法
    public void add(Node node) {
        //如果能空的话
        if (root == null) {
            root = node;
        } else {
            root.add(node);
        }
    }
    //    中序遍历
    public void infixOrder() {
        if (root != null) {
            root.infixOrder();
        } else {
            System.out.println("空树 无法遍历");
        }
    }
}
class Node {
    int value;
    Node left;
    Node right;
    public Node(int value) {
        this.value = value;
    }
    /**
     * @author 冷环渊 Doomwatcher
     * @context:
     * 找到想要查到要删除的节点
     * @date: 2022/2/17 14:15
     * @param value 想要删除的节点的值
     * @return: com.hyc.DataStructure.binarysorttree.Node 如果找到了就返回节点,如果没找到那就返回null
     */
    public Node search(int value) {
        if (value == this.value) {
            //如果相同就返回自己
            return this;
        } else if (value < this.value) {
            //如果查找的值 小于当前节点就向左子树递归查找
            if (this.left == null) {
                return null;
            }
            return this.left.search(value);
        } else {
            //    如果查找的值不下节点,向右子树递归查找
            if (this.right == null) {
                return null;
            }
            return this.right.search(value);
        }
    }
    /**
     * @author 冷环渊 Doomwatcher
     * @context: 查找要删除节点的父节点
     * @date: 2022/2/17 14:23
     * @param value value 要找的节点值
     * @return: com.hyc.DataStructure.binarysorttree.Node 返回的事要删除的节点
     */
    public Node searchParent(int value) {
        //   判断当前节点的两个子节点的值是不是等于我们要查找的值,如果是的话当前节点就是我们要寻找的父节点
        if ((this.left != null && this.left.value == value) ||
                (this.right != null && this.right.value == value)) {
            return this;
        } else {
            //    如果查找的值小于当前的节点值,并且当前节点的左子节点不等于空
            if (value < this.value && this.left != null) {
                //向左子树递归查找
                return this.left.searchParent(value);
            } else if (value >= this.value && this.right != null) {
                //向右子树递归查找
                return this.right.searchParent(value);
            } else {
                //没有找到
                return null;
            }
        }
    }
    @Override
    public String toString() {
        return "Node{" +
                "value=" + value +
                '}';
    }
    public void add(Node node) {
        if (node == null) {
            return;
        }
        //    判断传入接待你值是否大于当前节点
        if (node.value < this.value) {
            //如果当前节点左子节点为null
            if (this.left == null) {
                this.left = node;
            } else {
                this.left.add(node);
            }
        } else {
            //    判断节点如果大于当前节点的值
            if (this.right == null) {
                this.right = node;
            } else {
                this.right.add(node);
            }
        }
    }
    //中序遍历
    public void infixOrder() {
        if (this.left != null) {
            this.left.infixOrder();
        }
        System.out.println(this);
        if (this.right != null) {
            this.right.infixOrder();
        }
    }
}


相关文章
|
2月前
|
存储 算法 数据管理
数据结构与算法学习二零:二叉排序树(BST)、平衡二叉树(AVL)
这篇文章通过需求分析、代码实现和测试验证,详细介绍了二叉排序树的创建、遍历和删除操作,以及二叉平衡树(AVL)的自平衡特性和单旋转操作,旨在提高树结构在数据管理中的效率和性能。
54 0
数据结构与算法学习二零:二叉排序树(BST)、平衡二叉树(AVL)
|
6月前
|
存储
深入解析AVL树:高效实现二叉平衡搜索树
深入解析AVL树:高效实现二叉平衡搜索树
31 1
|
6月前
深入解析AVL树:高效实现二叉平衡搜索树(2)
深入解析AVL树:高效实现二叉平衡搜索树
36 1
Java数据结构——平衡二叉树(AVL树)
Java数据结构——平衡二叉树(AVL树)
Java数据结构——平衡二叉树(AVL树)
|
存储 关系型数据库 MySQL
【数据结构】AVL平衡二叉树底层原理以及二叉树的演进之多叉树
【数据结构】AVL平衡二叉树底层原理以及二叉树的演进之多叉树
【数据结构】AVL平衡二叉树底层原理以及二叉树的演进之多叉树
|
存储 算法
【开卷数据结构 】二叉排序树(BST)
【开卷数据结构 】二叉排序树(BST)
118 0
|
算法 Java
Java数据结构与算法分析(九)AVL树(平衡二叉树)
AVL(Adelson-Velskii 和 Landis)树是带有平衡条件的二叉查找树,又叫做平衡二叉树。在AVL树中任何节点的两个子树高度差最多为1,所以它又被称为高度平衡树。
116 0
|
算法 Java
Java数据结构与算法分析(八)二叉查找树(BST)
二叉查找树又叫二叉排序树(Binary Sort Tree),或叫二叉搜索树,简称BST。BST是一种节点值之间有次序的二叉树。
106 0
|
存储 缓存 算法
从二叉查找树到B*树,一文搞懂搜索树的演进!
本文从二分查找讲起,讲解了BST、AVL、红黑树、B树、B+树最后到B*树的演进过程,知其所以然!
从二叉查找树到B*树,一文搞懂搜索树的演进!
|
存储 算法
【数据结构和算法】树表的查找算法(二叉排序树与平衡二叉树)
【数据结构和算法】树表的查找算法(二叉排序树与平衡二叉树)
297 0
【数据结构和算法】树表的查找算法(二叉排序树与平衡二叉树)