《面向机器智能的TensorFlow实践》一2.2 Jupyter Notebook与matplotlib

简介:

本节书摘来自华章出版社《面向机器智能的TensorFlow实践》一书中的第2章,第2.2节,作者 山姆·亚伯拉罕(Sam Abrahams)丹尼亚尔·哈夫纳(Danijar Hafner)[美] 埃里克·厄威特(Erik Erwitt)阿里尔·斯卡尔皮内里(Ariel Scarpinelli),更多章节内容可以访问云栖社区“华章计算机”公众号查看。




2.2 Jupyter Notebook与matplotlib

在数据科学工作流中频繁使用的两款出色的软件是Jupyter Notebook和matplotlib。它们与NumPy协同使用已有多年,TensorFlow与NumPy的紧密集成使得用户可采用他们熟悉的工作模式。两者均为开源软件,且采用的许可协议均为BSD。

利用Jupyter Notebook(前身为iPython Notebook),可交互式地编写包含代码、文本、输出、LaTeX及其他可视化结果的文档。这使得它在依据探索分析创建报告时极为有用,因为可将创建可视化图表的代码直接在图表的旁边展示出来,也可利用Markdown单元以格式丰富的文本分享你对于某个特定方法的见解。此外,对于设计原型的想法,Jupyter Notebook也极为出色,因为你可回顾和编辑部分代码,然后从笔记本中直接运行。与许多其他要求逐行执行代码的交互式Python环境不同,Jupyter Notebook允许将代码写入逻辑块中,这使得调试脚本中特定部分相对容易。在TensorFlow中,这个特性是极有价值的,因为典型的TensorFlow程序已经被划分为“计算图的定义”和“运行计算图”两部分。

matplotlib是一个绘图库,它允许用户使用Python创建动态的、自定义的可视化结果。它与NumPy无缝集成,其绘图结果可直接显示在Jupyter Notebook中。matplotlib也可将数值数据以图像的形式可视化,这个功能可用于验证图像识别任务的输出,并将神经网络的内部单元可视化。构建在Matplotlib之上的其他层,如Seaborn,可用于增强其功能。

相关文章
|
数据可视化 数据挖掘 数据处理
Python数据可视化库Matplotlib介绍与实践
本文深入介绍了Python中常用的数据可视化库Matplotlib,包括其基本概念、核心功能和实际运用。通过详细的示例和解释,帮助读者更好地理解Matplotlib的用法和优势,为数据分析和可视化提供技术支持。
|
3月前
|
IDE 开发工具 Python
魔搭notebook在web IDE下,使用jupyter notebook,python扩展包无法更新升级
魔搭notebook在web IDE下,使用jupyter notebook,python扩展包无法更新升级,不升级无法使用,安装python扩展包的时候一直停留在installing
91 4
|
数据采集 机器学习/深度学习 数据可视化
使用Jupyter Notebook进行数据分析:入门与实践
【6月更文挑战第5天】Jupyter Notebook是数据科学家青睐的交互式计算环境,用于创建包含代码、方程、可视化和文本的文档。本文介绍了其基本用法和安装配置,通过一个数据分析案例展示了如何使用Notebook进行数据加载、清洗、预处理、探索、可视化以及建模。Notebook支持多种语言,提供直观的交互体验,便于结果呈现和分享。它是高效数据分析的得力工具,初学者可通过本文案例开始探索。
1057 3
|
数据可视化 数据挖掘 Python
Python数据可视化库Matplotlib应用实践
【2月更文挑战第10天】 在数据分析和可视化领域,Python语言的Matplotlib库无疑是一把强大的利器。本文将介绍Matplotlib库的基本用法以及在数据可视化中的应用实践,通过示例代码演示如何利用Matplotlib库创建各种类型的图表,帮助读者更好地理解和运用这一强大工具。
138 0
|
Python
Jupyter Notebook又一利器nbterm,在终端玩notebook!
Jupyter Notebook又一利器nbterm,在终端玩notebook!
247 4
|
数据可视化 数据格式 Python
Matplotlib绘图从零入门到实践(含各类用法详解)
本文是一份全面的Matplotlib绘图库教程,涵盖了从基础到高级的各类用法,包括安装、基础图形绘制、调节设置、数值处理、图形美化、动画制作等,并提供了理论讨论和实例项目,旨在帮助读者从零开始学习并掌握Python中的Matplotlib绘图。
452 0
|
文字识别 异构计算 Python
关于云端Jupyter Notebook的使用过程与感想
在自学Python时,由于家庭电脑使用冲突和设备老旧,转向云端平台。体验了多个服务:1. 魔搭modelscope(最喜欢,赠送资源丰富,社区活跃),2. Colaboratory(免费GPU,但有时重启,建议用阿里云),3. Deepnote(免费环境有限,但GPT-4代码生成功能强大),4. 飞桨aistudio(适合PaddlePaddle用户),5. ModelArts(曾有免费实例,现难找)。综合来看,阿里云的稳定性与服务更优,尤其是魔搭的自动代码修正功能。对于AIGC,推荐魔搭和付费版PAI-DSW。欢迎分享更多云端Jupyter平台体验。
682 1
|
Python 数据挖掘 数据可视化
Python数据分析——Pandas与Jupyter Notebook
【6月更文挑战第1天】 本文探讨了如何使用Python的Pandas库和Jupyter Notebook进行数据分析。首先,介绍了安装和设置步骤,然后展示了如何使用Pandas的DataFrame进行数据加载、清洗和基本分析。接着,通过Jupyter Notebook的交互式环境,演示了数据分析和可视化,包括直方图的创建。文章还涉及数据清洗,如处理缺失值,并展示了如何进行高级数据分析,如数据分组和聚合。此外,还提供了将分析结果导出到文件的方法。通过销售数据的完整案例,详细说明了从加载数据到可视化和结果导出的全过程。最后,讨论了进一步的分析和可视化技巧,如销售额趋势、产品销售排名和区域分布,以及
|
JSON 数据可视化 数据挖掘
适合数据分析的ide---Jupyter Notebook的安装使用
适合数据分析的ide---Jupyter Notebook的安装使用
315 2
|
Ubuntu 网络安全 数据安全/隐私保护
使用SSH隧道将Ubuntu云服务器Jupyter Notebook端口映射到本地
这样,你就成功地将Ubuntu云服务器上的Jupyter Notebook端口映射到本地,使你能够通过本地浏览器访问并使用Jupyter Notebook。
834 1

热门文章

最新文章