1N5819HW-7-F整流二极管

简介: 1N5819HW-7-F整流二极管

美1N5819HW-7-F是一款具有保护环模具结构的肖特基整流二极管

带瞬态保护功能,低功耗、效率高,可通过大电流,正向压降低。

主要应用:低电压、高频逆变器、极性保护应用。

REACH 状态

非 REACH 产品

安装类型

表面贴装型

湿气敏感性等级 (MSL)

1(无限)

电流 - 平均整流 (Io)

1A

不同 If 时电压 - 正向 (Vf)

450mV @ 1A

ECCN

EAR99

电压 - DC 反向 (Vr)(最大值)

40V

包装

卷带(TR)

工作温度 - 结

-65°C ~ 125°C

不同 Vr 时电流 - 反向泄漏

1mA @ 40V

RoHS 状态

符合 ROHS3 规范

封装/外壳

SOD-123

供应商器件封装

SOD-123

速度

快速恢复 = 200mA(Io)

二极管类型

肖特基

类别

分立半导体产品/二极管 - 整流器 - 单

目录
打赏
0
0
0
0
3
分享
相关文章
二极管
二极管是一种电子器件,也称为晶体二极管,是由两个不同掺杂的半导体材料组成。它具有一个P型半导体和一个N型半导体,这两个半导体通过P-N结相连接。
53 1
稳压二极管
稳压二极管,也称为稳压二极管或Zener二极管,是一种特殊的二极管,具有稳定的反向击穿电压特性。 稳压二极管的工作原理是基于反向击穿效应。当稳压二极管的反向电压超过其击穿电压(也称为稳压电压),它会进入反向击穿状态,电流急剧增加,从而使其反向电压保持在稳定的水平上。
263 0
特殊二极管的介绍
特殊二极管的应用及特点 一、引言 在现代电子技术领域中,二极管是一种常见且重要的电子器件。它有着广泛的应用,如整流、开关、放大等。然而,除了常见的普通二极管外,还存在着一些特殊的二极管,它们在特定的场合下具有独特的功能和特点。本文将介绍几种特殊二极管的应用及其特点。 二、肖特基二极管 肖特基二极管是一种具有金属-半导体接触的二极管。相比于普通二极管,肖特基二极管具有更低的正向压降和更快的开关速度。这使得它在高频电路和开关电源中得到广泛应用。此外,肖特基二极管还具有较低的反向漏电流和较高的温度稳定性,使其适用于高温环境下的工作。 三、光电二极管 光电二极管是一种能够将光信号转化为电信号的二
220 0
电源常用电路:采样电路
在之前的帖子中,我们已经介绍了数字电源及其核心控制器PPEC。当然,数字电源除了包含电源拓扑电路以及数字控制核心外,还包括采样、驱动和通讯等外围电路。 本篇就先对电源的ADC采样原理和常用的采样调理电路进行介绍吧。 一、ADC采样原理 ADC(模数转换器)采样是将模拟信号按照一定的采样频率进行离散化,然后转换为数字信号的过程,通常包括采样、保持、量化和编码四个步骤。 ▍采样 采样主要实现模拟信号的离散化处理,即将连续的模拟信号转换为一系列时间间隔相等的模拟信号。 采样的间隔由采样频率决定,频率越高采样得到的信号越接近原始信号。但较高的采样频率会使得数据量增加,同时对系统的转换速度要
153 4
|
8月前
LDO
LDO
93 3
|
8月前
|
PWM 调光的线性降压 LED 恒流驱动器
一、基本概述 TX6410 是一种带 PWM 调光功能的线性降压 LED 恒流驱动器,仅需外接一个电阻就可以构成一个完整的 LED 恒流驱动电路,调节该外接电阻可调节输出电流,输出电流范围为 10~2000mA。内置 30V 50 毫欧 MOS。内置过热保护功能,可有效保护芯片,避免因过热而造成损坏。具有很低的静态电流,典型值为49uA。带 PWM 调光功能, 可通过在DIM 脚加 PWM 信号调节 LED 电流。芯片采用 ESOP8 封装,内置散热片接LED脚。 二、产品的特点 VDD工作电压:2.5-6V 输出电流:10mA - 2A 内置 30V/50mΩ MOS PWM调光
144 1
|
8月前
|
带PWM 调光的线性降压 LED 恒流驱动器
一、基本概述 TX6410B是一种带 PWM 调光功能的线性降压 LED 恒流驱动器,仅需外接一个电阻就可以构成一个完整的 LED 恒流驱动电路,调节该外接电阻可调节输出电流,输出电流范围为 10~2000mA。TX6410B内置 30V 50 毫欧 MOS。TX6410B内置过热保护功能,可有效保护芯片,避免因过热而造成损坏。TX6410B具有很低的静态电流,典型值为 60uA。TX6410B带 PWM 调光功能,可通过在 DIM 脚加 PWM 信号调节 LED 电流。TX6410B采用ESOP8 封装。外露散热片接 LED 脚。 二、产品特点 内置 30V 50 毫欧 MOS 输出
225 0
齐纳二极管的介绍
齐纳二极管(Zener Diode)是一种特殊的二极管,它具有特殊的电压稳定特性,被广泛应用于电压调节和电压参考电路中。本文将介绍齐纳二极管的基本原理、特点和应用,并探讨其在电子领域中的重要性。 一、齐纳二极管的基本原理 齐纳二极管是一种具有特殊结构的二极管,其PN结在逆向击穿时能够保持较为稳定的电压输出。齐纳二极管的工作原理基于逆向击穿效应,当逆向电压达到齐纳电压(Zener Voltage)时,二极管会发生逆向击穿,形成一个稳定的电压输出。这种逆向击穿效应是由于齐纳二极管的特殊结构和材料性质所决定的。 二、齐纳二极管的特点 1. 电压稳定性:齐纳二极管具有较高的电压稳定性,即在逆向击穿
215 1
二极管及其应用
一、什么是二极管 二极管(Diode)是一种由半导体材料制成的电子元件。它由一个P型半导体和一个N型半导体组成。P型半导体富含正电荷,N型半导体富含负电荷。 当将P型半导体和N型半导体直接连接在一起时,形成了一个PN结。在PN结中,由于两种半导体材料之间的电荷情况不同,形成了一个电势差和电场。这个电势差使得自由电子从N型区域朝向P型区域移动,而空穴则从P型区域朝向N型区域移动。这个过程被称为扩散。 当在二极管的两端施加外加电压时,有两种可能的情况: 1. 正向偏置:当正电压施加到P型区域,负电压施加到N型区域时,通过PN结的电流流动。在这种情况下,二极管处于导通状态,电流可以流过。 2. 反向
109 1