Linux系统编程-进程间通信(共享内存)

简介: 共享内存也是进程间(进程间不需要有继承关系)通信的一种常用手段。一般OS通过内存映射与页交换技术,使进程的内存空间映射到不同的物理内存,这样能保证每个进程运行的独立性,不至于受其它进程的影响。但可以通过共享内存的方式,使不同进程的虚拟内存映射到同一块物理内存,一个进程往这块物理内存中更新的数据,另外的进程可以立即看到这块物理内存中修改的内容。

前面陆续介绍了标准管道流、无名管道、命名管道、mmap内存映射,这篇文章介绍共享内存段。

1. 共享内存机制(shmget)

共享内存也是进程间(进程间不需要有继承关系)通信的一种常用手段。一般OS通过内存映射与页交换技术,使进程的内存空间映射到不同的物理内存,这样能保证每个进程运行的独立性,不至于受其它进程的影响。但可以通过共享内存的方式,使不同进程的虚拟内存映射到同一块物理内存,一个进程往这块物理内存中更新的数据,另外的进程可以立即看到这块物理内存中修改的内容。

内存映射和共享内存的区别:

mmap内存映射:跟普通文件的读写相比,加快对文件/设备的访问速度。
shmget共享内存:多进程间进行通信。

原理及实现:

system V IPC机制下的共享内存本质是一段特殊的内存区域,进程间需要共享的数据被放在该共享内存区域中,所有需要访问该共享区域的进程都要把该共享区域映射到本进程的地址空间中去。这样一个使用共享内存的进程可以将信息写入该空间,而另一个使用共享内存的进程又可以通过简单的内存读操作获取刚才写入的信息,使得两个不同进程之间进行了一次信息交换,从而实现进程间的通信。共享内存允许一个或多个进程通过同时出现在它们的虚拟地址空间的内存进行通信,而这块虚拟内存的页面被每个共享进程的页表条目所引用,同时并不需要在所有进程的虚拟内存都有相同的地址。进程对象对于共享内存的访问通过key(键)来控制,同时通过key进行访问权限的检查。

2. 共享内存机制相关函数接口介绍

2.1 ftok函数

#include <sys/types.h>
#include <sys/ipc.h>
key_t ftok(const char *pathname, int proj_id);

函数功能: 用于创建一个关键字,可以用该关键字关联一个共享内存段。
参数介绍:
(1) pathname:全路径文件名,并且该文件必须可访问。
(2) proj_id:通常传入一非0字符。通过pathname和proj_id组合可以创建唯一的key(对任何进程都是唯一且相同的)。
返回值:
如果调用成功,返回一关键字,否则返回-1。

2.2 shmge函数

#include <sys/ipc.h>
#include <sys/shm.h>
int shmget(key_t key, size_t size, int shmflg);

shmget 函数用于创建或打开一共享内存段,该内存段由函数的第一个参数标识。函数成功则返回一个该共享内存段的唯一标识号(唯一的标识了这个共享内存段),对任何进程都是唯一且相同的。

参数介绍
(1) key是一个与共享内存段相关联的关键字,如果事先已经存在一个与指定关键字关联的共享内存段,则直接返回该内存段的标识。key的值既可以用ftok函数产生,也可以是IPC_RPIVATE(用于创建一个只属于创建进程的共享内存,主要用于父子通信),表示总是创建新的共享内存段。
(2) size指定共享内存段的大小,以字节为单位。
(3) shmflg是一掩码合成值,可以是访问权限值与(IPC_CREAT或IPC_EXCL)的合成。IPC_CREAT表示如果不存在该内存段,则创建它。IPC_EXCL表示如果该内存段存在,则函数返回失败结果(-1)。

返回值

如果调用成功,返回内存段标识,否则返回-1。

2.3 shmat函数

函数shmat将共享内存段映射到进程空间的某一地址。

#include <sys/types.h>
#include <sys/shm.h>
void *shmat(int shmid, const void *shmaddr, int shmflg);

注意: 只有管理员用户权限才可以获取内存地址

参数
(1) shmid 是共享内存段的标识通常应该是shmget的成功返回值。
(2) shmaddr指定的是共享内存连接到当前进程中的地址位置。通常是NULL,表示让系统来选择共享内存出现的地址。
(3) shmflg是一组位标识,通常为0即可。如果是SHM_RDONLY的话,就是只读模式。其它的是读写模式。

返回值
如果调用成功,返回映射后的进程空间的首地址,否则返回(void*)-1。

2.4 shmdt函数

shmdt用于将共享内存段与进程空间分离,与shmat函数相反。用于关闭共享内存段。

#include <sys/types.h>
#include <sys/shm.h>
int shmdt(const void *shmaddr);

参数
shmaddr通常为shmat的成功返回值。
返回值
成功返回0,失败时返回-1。
注意:只是将共享内存分离,并没有没删除它,只是使得该共享内存对当前进程不再可用。

2.5 shmctl函数

函数shmctl是共享内存的控制函数,可以用来删除共享内存段。

#include <sys/ipc.h>
#include <sys/shm.h>
int shmctl(int shmid, int cmd, struct shmid_ds *buf);

参数:

(1)shmid:共享内存段标识 通常应该是shmget的成功返回值

(2)cmd:对共享内存段的操作方式

IPC_STAT 得到共享内存的状态,把共享内存的shmid_ds结构复制到buf中
IPC_SET 改变共享内存的状态,把buf所指的shmid_ds结构中的uid、gid、mode复制到共享内存的shmid_ds结构内
IPC_RMID 删除这片共享内存

可选为IPC_STAT,IPC_SET,IPC_RMID。通常为IPC_RMID,表示删除共享内存段。

(3)buf:表示共享内存段的信息结构体数据,通常为NULL。

例如: shmctl(kshareMem,IPC_RMID,NULL)表示删除共享内存段kHareMem

3. 案例: 基本用法示例1

3.1 创建内存段写数据示例

下面代码使用/work/1.dat的文件属性获取key,作为内存标识符;再创建共享内存段,映射内存地址,然后向内存空间写入数据"hello world",再取消映射。这时候其他进程就可以访问这个内存段读取里面的数据。

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/types.h>
int main()
{
    key_t key = ftok("/work/1.dat",1);                //1. 写入端先用ftok函数获得key
    int shmid = shmget(key,4096,IPC_CREAT);     //2. 写入端用shmget函数创建共享内存段
    printf("key = %d shmid = %d\n", key, shmid);
    char *p = (char *)shmat(shmid, NULL, 0);     //3. 获得共享内存段的首地址
    memset(p, 0, 4096);                       //  清除内存空间
    memcpy(p, "hello world", 4096);                //4. 往共享内存段中写入内容
    shmdt(p);                               //5. 关闭共享内存段
    return 0;
}

3.2 打开内存段读取示例

下面代码用来访问,上面写端代码创建的共享内存段里的数据,流程一样。shmget函数如果判断出共享内存段已经存在,就不会再重复创建(依靠key作为标识符判断的);接着再映射空间地址,读取内存里的数据,打印出hello world,最后再销毁内存空间。

#include <stdio.h>
#include <unistd.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/types.h>
int main()
{
    key_t key = ftok("/work/1.dat",1);
    int shmid = shmget(key,4096,IPC_CREAT);
    printf("key = %d shmid = %d\n", key, shmid);
    char *p = (char *)shmat(shmid, NULL, 0);
    printf("receive the data:%s\n",p);             //4. 读取共享内存段中的内容
    shmctl(shmid, IPC_RMID, 0);             //5. 删除共享内存段
//不删除内存空间,数据会一直存在的
    return 0;
}

4. 案例: 基本用法示例2

上面例子代码是通过获取文件的属性得到唯一的key,实际上也可以自己指定key,只要保证唯一性即可。

4.1 创建内存写数据示例

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <dirent.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/wait.h>
#include <sys/shm.h>

int main(int argc,char **argv)
{
    /*1. 创建共享内存段*/
    int shmid=shmget(123456,4096,IPC_CREAT);
    /*2. 映射共享内存到进程空间*/
    unsigned char *p;
    p=shmat(shmid,NULL,0);
    /*3. 对共享内存实现读写*/
    strcpy(p,"Linux下进程间通信共享内存学习");
    /*4. 取消映射*/
    shmdt(p);
    return 0;
}

4.2 打开内存读数据示例

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <dirent.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/wait.h>
#include <sys/shm.h>

int main(int argc,char **argv)
{
    /*1. 创建共享内存段*/
    int shmid=shmget(123456,4096,IPC_CREAT);
    /*2. 映射共享内存到进程空间*/
    unsigned char *p;
    p=shmat(shmid,NULL,0);
    /*3. 对共享内存实现读写*/
    printf("p=%s\n",p);
    /*4. 取消映射*/
    shmdt(p);
    /*5. 释放共享内存空间*/
    shmctl(shmid,IPC_RMID,NULL);
    return 0;
}
目录
相关文章
|
13天前
|
缓存 监控 Linux
linux进程管理万字详解!!!
本文档介绍了Linux系统中进程管理、系统负载监控、内存监控和磁盘监控的基本概念和常用命令。主要内容包括: 1. **进程管理**: - **进程介绍**:程序与进程的关系、进程的生命周期、查看进程号和父进程号的方法。 - **进程监控命令**:`ps`、`pstree`、`pidof`、`top`、`htop`、`lsof`等命令的使用方法和案例。 - **进程管理命令**:控制信号、`kill`、`pkill`、`killall`、前台和后台运行、`screen`、`nohup`等命令的使用方法和案例。
44 4
linux进程管理万字详解!!!
|
4天前
|
存储 运维 监控
深入Linux基础:文件系统与进程管理详解
深入Linux基础:文件系统与进程管理详解
41 8
|
11天前
|
算法 Linux 开发者
深入探究Linux内核中的内存管理机制
本文旨在对Linux操作系统的内存管理机制进行深入分析,探讨其如何通过高效的内存分配和回收策略来优化系统性能。文章将详细介绍Linux内核中内存管理的关键技术点,包括物理内存与虚拟内存的映射、页面置换算法、以及内存碎片的处理方法等。通过对这些技术点的解析,本文旨在为读者提供一个清晰的Linux内存管理框架,帮助理解其在现代计算环境中的重要性和应用。
|
13天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
46 4
|
14天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
15天前
|
消息中间件 存储 Linux
|
17天前
|
存储 缓存 监控
|
22天前
|
运维 Linux
Linux查找占用的端口,并杀死进程的简单方法
通过上述步骤和命令,您能够迅速识别并根据实际情况管理Linux系统中占用特定端口的进程。为了获得更全面的服务器管理技巧和解决方案,提供了丰富的资源和专业服务,是您提升运维技能的理想选择。
23 1
|
1月前
|
算法 Linux 调度
深入理解Linux操作系统的进程管理
【10月更文挑战第9天】本文将深入浅出地介绍Linux系统中的进程管理机制,包括进程的概念、状态、调度以及如何在Linux环境下进行进程控制。我们将通过直观的语言和生动的比喻,让读者轻松掌握这一核心概念。文章不仅适合初学者构建基础,也能帮助有经验的用户加深对进程管理的理解。
22 1
|
14天前
|
缓存 算法 Linux
Linux内核中的内存管理机制深度剖析####
【10月更文挑战第28天】 本文深入探讨了Linux操作系统的心脏——内核,聚焦其内存管理机制的奥秘。不同于传统摘要的概述方式,本文将以一次虚拟的内存分配请求为引子,逐步揭开Linux如何高效、安全地管理着从微小嵌入式设备到庞大数据中心数以千计程序的内存需求。通过这段旅程,读者将直观感受到Linux内存管理的精妙设计与强大能力,以及它是如何在复杂多变的环境中保持系统稳定与性能优化的。 ####
23 0