Python 自动化测试(四):数据驱动

简介: ![](https://ceshiren.com/uploads/default/original/3X/3/c/3c2661a3dc11a451ebee2ceeb5a4f06e63f20111.jpeg)在实际的测试工作中,通常需要对多组不同的输入数据,进行同样的测试操作步骤,以验证我们的软件质量。这种测试,在功能测试中非常耗费人力物力,但是在自动化中,却比较好实现,只要实现了测试操作步骤,
更多技术文章分享和免费资料领取
https://qrcode.testing-studio.com/f?from=Aliyun&url=https://ceshiren.com/t/topic/16586

在实际的测试工作中,通常需要对多组不同的输入数据,进行同样的测试操作步骤,以验证我们的软件质量。这种测试,在功能测试中非常耗费人力物力,但是在自动化中,却比较好实现,只要实现了测试操作步骤,然后将多组测试数据以数据驱动的形式注入,就可以实现了。
前面文章学习了参数化,当数据量非常大的时候,我们可以将数据存放到外部文件中,使用的时候将文件中的数据读取出来,方便测试数据的管理。数据与测试用例分别管理,可以利用外部数据源 YAML、JSON、Excel、CSV 管理测试数据。
YAML 是一种容易阅读、适合表示程序语言的数据结构、可用于不同程序间交换数据、丰富的表达能力和可扩展性、易于使用的语言。通过缩进或符号来表示数据类型。
pyyaml 模块在 Python 中用于处理 YAML 格式数据,主要使用 yaml.safe_dump() 和 yaml.safe_load() 函数将 Python 值和 YAML 格式数据相互转换。工作中常常使用 YAML 格式的文件存储测试数据。
安装
案例
创建用例文件以及数据文件来完成数据驱动的测试案例,创建一个文件夹 testdata,在这个文件夹下创建 data.yml 和 test_yaml.py 文件。
创建 data.yml 文件:
创建“test_yaml.py”,代码如下:
代码分析:
yaml 文件里定义了列表数据,通过 open() 方法获取 data.yml 文件对象,使用 yaml.safe_load() 加载这个文件对象,将 YAML 格式文件转换为 Python 值,分别传到到用例中生成多条用例分别执行。
运行结果:
运行结果中 [1-2] 和 [20-30] 代码传入的两组参数,分别传入 test_foo() 用例方法中执行,并且分别生成两条测试结果。
以上,pytest 组合 YAML 实现数据驱动,YAML 文件作为用例数据源,控制测试用例的执行,使测试用例数据维护更加方便快捷。
【相关阅读】
  • Python 测试开发实战进阶,挑战阿里P6+,年薪50W+!
  • 干货 | 一文搞定 pytest 自动化测试框架(一)
  • 干货 | 一文搞定 pytest 自动化测试框架(二)
  • Python 自动化测试(三): pytest 参数化测试用例构建
  • 干货 | 一文搞定 Linux 常用高频命令

活动推荐

本周四晚 8 点,霍格沃兹测试学院邀请到资深测试技术专家方程老师分享《Pytest 自动化测试最佳实践》主题公开课,通过动手实战,快速掌握 Pytest 进阶技能。

提升自己的核心竞争力吧
原文链接
### ⬇️ 点击“下方链接”,提升测试核心竞争力!

更多技术文章分享和免费资料领取
https://qrcode.testing-studio.com/f?from=Aliyun&url=https://ceshiren.com/t/topic/16586
相关文章
|
20天前
|
Web App开发 前端开发 JavaScript
探索Python科学计算的边界:利用Selenium进行Web应用性能测试与优化
【10月更文挑战第6天】随着互联网技术的发展,Web应用程序已经成为人们日常生活和工作中不可或缺的一部分。这些应用不仅需要提供丰富的功能,还必须具备良好的性能表现以保证用户体验。性能测试是确保Web应用能够快速响应用户请求并处理大量并发访问的关键步骤之一。本文将探讨如何使用Python结合Selenium来进行Web应用的性能测试,并通过实际代码示例展示如何识别瓶颈及优化应用。
65 5
|
21天前
|
数据采集 存储 JavaScript
自动化数据处理:使用Selenium与Excel打造的数据爬取管道
本文介绍了一种使用Selenium和Excel结合代理IP技术从WIPO品牌数据库(branddb.wipo.int)自动化爬取专利信息的方法。通过Selenium模拟用户操作,处理JavaScript动态加载页面,利用代理IP避免IP封禁,确保数据爬取稳定性和隐私性。爬取的数据将存储在Excel中,便于后续分析。此外,文章还详细介绍了Selenium的基本设置、代理IP配置及使用技巧,并探讨了未来可能采用的更多防反爬策略,以提升爬虫效率和稳定性。
|
8天前
|
数据安全/隐私保护 Python
python之自动化进入CSDN
python之自动化进入CSDN
14 0
|
20天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
使用Python实现深度学习模型:智能数据隐私保护
使用Python实现深度学习模型:智能数据隐私保护 【10月更文挑战第3天】
63 0
|
8天前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
18天前
|
数据处理 Python
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
这篇文章介绍了如何使用Python读取Excel文件中的数据,处理后将其保存为txt、xlsx和csv格式的文件。
37 3
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
|
18天前
|
计算机视觉 Python
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
这篇文章介绍了如何使用Python的OpenCV库将多张图片合并为一张图片显示,以及如何使用matplotlib库从不同txt文档中读取数据并绘制多条折线图。
37 3
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
|
19天前
|
数据可视化 算法 Python
基于OpenFOAM和Python的流场动态模态分解:从数据提取到POD-DMD分析
本文介绍了如何利用Python脚本结合动态模态分解(DMD)技术,分析从OpenFOAM模拟中提取的二维切片数据,以深入理解流体动力学现象。通过PyVista库处理VTK格式的模拟数据,进行POD和DMD分析,揭示流场中的主要能量结构及动态特征。此方法为研究复杂流动系统提供了有力工具。
48 2
基于OpenFOAM和Python的流场动态模态分解:从数据提取到POD-DMD分析
|
3天前
|
JSON 测试技术 持续交付
自动化测试与脚本编写:Python实践指南
自动化测试与脚本编写:Python实践指南
10 1
|
4天前
|
数据采集 机器学习/深度学习 搜索推荐
Python自动化:关键词密度分析与搜索引擎优化
Python自动化:关键词密度分析与搜索引擎优化