通用数据库审计K8s部署实践

本文涉及的产品
对象存储 OSS,20GB 3个月
日志服务 SLS,月写入数据量 50GB 1个月
阿里云盘企业版 CDE,企业版用户数5人 500GB空间
简介: 通用数据库审计是日志服务提供的一种轻量级、低成本数据库安全方案,在之前的文章《自建数据库没有审计方案?试试这套轻量级低成本方案》中介绍了通过部署Logtail和Packetbeat在应用服务器或者数据库服务器上的方法抓取数据库操作行为流量,从而实现数据库审计数据的采集。日志服务提供了开箱即用的审计报表和告警配置。随着云原生技术的成熟,越来越多的应用部署在云原生环境,云原生环境的动态及灵活性给抓包工具带来了一些困难,本文主要介绍在K8s环境下如何部署这套轻量级、低成本审计方案。

通用数据库审计简介

通用数据库审计是日志服务提供的一种轻量级、低成本数据库安全方案,在之前的文章《自建数据库没有审计方案?试试这套轻量级低成本方案》中介绍了通过部署Logtail和Packetbeat在应用服务器或者数据库服务器上的方法抓取数据库操作行为流量,从而实现数据库审计数据的采集。日志服务提供了开箱即用的审计报表和告警配置。

随着云原生技术的成熟,越来越多的应用部署在云原生环境,云原生环境的动态及灵活性给抓包工具带来了一些困难,本文主要介绍在K8s环境下如何部署这套轻量级、低成本审计方案。

K8s场景下网络介绍

容器网络

众所周知,容器是一种操作系统的虚拟化环境,本质上是与系统其它部分隔离的一个或者一组进程。其实现主要借助了Cgroup和Namespace(命名空间)两个内核特性,其中Cgroup做资源的控制,Namespace做访问的隔离。

每个容器可以有自己单独的命名空间,命名空间下可以有CPU、PID、文件系统、网络、内存等资源,各类资源的命名空间可以让容器中的应用可以独立运行。

网络命名空间可以实现容器的网络隔离,在容器的命名空间内可以看到一个完整的网络协议栈的视图。包含网络设备接口、协议栈等。docker容器主要借助Linux veth pair和Bridge网桥来实现容器与Host的通信、容器与容器的通信。

如下图所示,Host宿主机中有两个容器,每个容器各自一个网络设备eth0,然后容器中的eth0通过对应的veth pair与宿主机进行通信,veth1和veth2又挂载在具有IP地址的网桥Docker0上。在容器环境下,看到的网络设备是自己的eth0;在Host宿主机环境中看到的是veth1、veth2、docker0和eth0;

在容器环境中的应用的网络包的进出是会通过veth pair;所以对于容器的网络包抓取可以通过veth pair的两端,一端是容器内的eth0,一段是宿主机内的veth1。

K8s网络

在K8s环境中,网络架构更加复杂,CNI(Container Network Interface)作为一个标准的通用接口,用于连续容器管理系统和网络插件,K8s需要处理不同容器间的通信、跨主机的通信。业界也有一些基于CNI的容器网络解决方案,如flannel、calico、weave、Terway等。

一个典型的CNI插件的开发流程如下:

图片来自溪恒文章

与容器网络类似,K8s的CNI插件也需要在宿主机将veth pair的另一端暴露出来,这样pod中的eth0流量可以通过veth1来与外界互通,只不过容器网络中eth0是在一个容器的命名空间下,在K8s中,一个Pod中可以有多个容器,多个容器共享同一个网络命名空间。所以在宿主机上还是可以通过容器的对端veth1来对pod内的网络流量就行抓包。

K8s下通用数据库审计实践

日志服务通用数据库审计是通过网络流量抓取来收集数据库的操作行为,原理可以参考《自建数据库没有审计方案?试试这套轻量级低成本方案》,具体使用方法可以参考通用数据库审计。在K8s环境下由于不同场景的需求,这里以Packetbeat转包程序为例提供几种云原生的方式来部署抓包程序。

部署方式

通过上述K8s场景下网络的介绍,可以得知,有两种方式可以对Pod的网络进行抓包;

  • 抓包程序与容器同属于同一个网络命名空间下。
  • 抓包程序部署在容器的Host宿主机上,通过veth pair在宿主机上的一端进行抓包。

上述两种方式也就对应了K8s下的两种部署方式:

  • Sidecar:由于sidecar天生与业务容器在同一个Pod下,共享网络命名空间,抓包程序作为sidecar部署是可以抓取到下业务容器的流量。

  • Daemonset:由于Daemonset在每台宿主机上都会部署一个,通过让Daemonset拥有网络监听的能力,Daemonset就可以通过宿主机上的veth pair的一端来对业务容器进行抓包。

审计数据上报

上面可以看出可以通过sidecar或者daemonset的方式来部署抓包程序,抓包程序可以选择Packetbeat,Packetbeat可以输出到各类output,这里我们可以选择Kafka协议,将抓取到的流量数据通过Kafka上传都日志服务的Logstore。具体配置可以参考使用Kafka协议上传日志


部署实践

接下来介绍下部署Sidecar和Daemonset的部署方式,两者都是用来部署抓包程序,可以根据业务需求选择其中一种。两者的部署都依赖Configmap的配置,包含如下流程:

步骤1:

编辑packetbeat.yml

  • packetbeat.flows用来抓取网络设备的所有流量,如果不需要可以设置enabled:false,以减少数据的传输。
  • output.kafka的配置需要参考使用Kafka协议上传日志进行配置修改。需要替换其中的{project},{region},{ak},  {sk}。
  • 其他详细的配置可以参考packetbeat官方配置,Configure Packetbeat
packetbeat.interfaces.device: any
# Set `enabled: false` or comment out all options to disable flows reporting.packetbeat.flows:  timeout: 30s
  period: 10s
packetbeat.protocols:- type: mysql
  ports: [3306,3307]output.kafka:   hosts: ["{project}.{region}.log.aliyuncs.com:10012"]  username: "{project}"  password: "{ak}#{sk}"  ssl.certificate_authorities:   topic: 'general-db-logstore'  partition.round_robin:     reachable_only: false 
  required_acks: 1   compression: gzip 
  max_message_bytes: 1000000

创建configmap,通过文件方式创建configmap

kubectl create configmap packetbeat-config --from-file=packetbeat.yml=packetbeat.yml

步骤2选1:Daemonset模式

配置packetbeat-daemonset.yaml文件

  • 需要开启hostNetwork,让daemonset可以看到host机器上的网络设备。
  • 增加NET_ADMIN的capability来让daemonset可以监听网络设备的流量。
  • 通过resources来限制CPU和内存的占用。
apiVersion: apps/v1
kind: DaemonSet
metadata:  name: packetbeat-daemonset
  namespace: default
spec:  selector:    matchLabels:      app: packetbeat-daemonset
  template:    metadata:      name: packetbeat-daemonset
      labels:         app: packetbeat-daemonset
    spec:      restartPolicy: Always
      hostNetwork: true      containers:      - name: packetbeat
        image: docker.elastic.co/beats/packetbeat:8.1.0        resources:          limits:            cpu: 500m
            memory: 200Mi
          requests:            cpu: 100m
            memory: 200Mi
        command: ["/bin/sh","-c"]        args: ["/usr/share/packetbeat/packetbeat --strict.perms=false -c /etc/packetbeat/config/packetbeat.yml"]        securityContext:          capabilities:            add:            - NET_ADMIN
        volumeMounts:        - name: packetbeat-config
          mountPath: /etc/packetbeat/config
      terminationGracePeriodSeconds: 30      volumes:      - name: packetbeat-config
        configMap:          name: packetbeat-config
          items:          - key: packetbeat.yml
            path: packetbeat.yml

创建daemonset

kubectl apply -f packetbeat-daemonset.yaml


步骤2选1:Sidecar模式

创建packetbeat-sidecar.yaml文件

其中mysql-test容器为测试容器,请根据业务容器修改。

apiVersion: apps/v1
kind: Deployment
metadata:  name: packetbeat-sidecar
  namespace: default
spec:  selector:    matchLabels:      app: packetbeat-sidecar
  template:    metadata:      name: packetbeat-sidecar
      labels:         app: packetbeat-sidecar
    spec:      restartPolicy: Always
      containers:      - name: mysql-test
        image: imega/mysql-client
        command: ["/bin/sh","-c"]        args: ["mysql --host='xxx' --user=xxx --password='xxx' --database=mysql --execute='show tables;'; sleep 6000"]      - name: packetbeat-sidecar
        image: docker.elastic.co/beats/packetbeat:8.1.0        command: ["/bin/sh","-c"]        args: ["/usr/share/packetbeat/packetbeat --strict.perms=false -c /etc/packetbeat/config/packetbeat.yml"]        securityContext:          capabilities:            add:            - NET_ADMIN
        volumeMounts:        - name: packetbeat-config
          mountPath: /etc/packetbeat/config
      volumes:      - name: packetbeat-config
        configMap:          name: packetbeat-config
          items:          - key: packetbeat.yml
            path: packetbeat.yml

创建sidecar

kubectl apply -f packetbeat-sidecar.yaml

参考

目录
相关文章
|
2月前
|
Kubernetes Cloud Native Docker
云原生时代的容器化实践:Docker和Kubernetes入门
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术成为企业提升敏捷性和效率的关键。本篇文章将引导读者了解如何利用Docker进行容器化打包及部署,以及Kubernetes集群管理的基础操作,帮助初学者快速入门云原生的世界。通过实际案例分析,我们将深入探讨这些技术在现代IT架构中的应用与影响。
119 2
|
1月前
|
人工智能 运维 监控
阿里云ACK容器服务生产级可观测体系建设实践
本文整理自2024云栖大会冯诗淳(花名:行疾)的演讲,介绍了阿里云容器服务团队在生产级可观测体系建设方面的实践。冯诗淳详细阐述了容器化架构带来的挑战及解决方案,强调了可观测性对于构建稳健运维体系的重要性。文中提到,阿里云作为亚洲唯一蝉联全球领导者的容器管理平台,其可观测能力在多项关键评测中表现优异,支持AI、容器网络、存储等多个场景的高级容器可观测能力。此外,还介绍了阿里云容器服务在多云管理、成本优化等方面的最新进展,以及即将推出的ACK AI助手2.0,旨在通过智能引擎和专家诊断经验,简化异常数据查找,缩短故障响应时间。
阿里云ACK容器服务生产级可观测体系建设实践
|
1月前
|
弹性计算 安全 关系型数据库
活动实践 | 自建数据库迁移到云数据库
通过阿里云RDS,用户可获得稳定、安全的企业级数据库服务,无需担心数据库管理与维护。该方案使用RDS确保数据库的可靠性、可用性和安全性,结合ECS和DTS服务,实现自建数据库平滑迁移到云端,支持WordPress等应用的快速部署与运行。通过一键部署模板,用户能迅速搭建ECS和RDS实例,完成数据迁移及应用上线,显著提升业务灵活性和效率。
|
22天前
|
存储 Kubernetes 容器
K8S部署nexus
该配置文件定义了Nexus 3的Kubernetes部署,包括PersistentVolumeClaim、Deployment和服务。PVC请求20Gi存储,使用NFS存储类。Deployment配置了一个Nexus 3容器,内存限制为6G,CPU为1000m,并挂载数据卷。Service类型为NodePort,通过30520端口对外提供服务。所有资源位于`nexus`命名空间中。
|
1月前
|
运维 Kubernetes 调度
阿里云容器服务 ACK One 分布式云容器企业落地实践
阿里云容器服务ACK提供强大的产品能力,支持弹性、调度、可观测、成本治理和安全合规。针对拥有IDC或三方资源的企业,ACK One分布式云容器平台能够有效解决资源管理、多云多集群管理及边缘计算等挑战,实现云上云下统一管理,提升业务效率与稳定性。
|
1月前
|
SQL 弹性计算 安全
在云上轻松部署达梦数据库
达梦数据库(DM Database)是达梦数据库有限公司开发的关系型数据库管理系统,广泛应用于政府、金融、能源等行业。它具备高性能、高安全、兼容性强、易管理等特点,支持多种操作系统,适用于关键业务系统、政务系统及大数据处理等场景。在阿里云上,可通过一键部署快速使用达梦数据库DM8。
|
11天前
|
运维 监控 Cloud Native
云原生之运维监控实践:使用 taosKeeper 与 TDinsight 实现对 时序数据库TDengine 服务的监测告警
在数字化转型的过程中,监控与告警功能的优化对保障系统的稳定运行至关重要。本篇文章是“2024,我想和 TDengine 谈谈”征文活动的三等奖作品之一,详细介绍了如何利用 TDengine、taosKeeper 和 TDinsight 实现对 TDengine 服务的状态监控与告警功能。作者通过容器化安装 TDengine 和 Grafana,演示了如何配置 Grafana 数据源、导入 TDinsight 仪表板、以及如何设置告警规则和通知策略。欢迎大家阅读。
31 0
|
2月前
|
Kubernetes Cloud Native 微服务
云原生入门与实践:Kubernetes的简易部署
云原生技术正改变着现代应用的开发和部署方式。本文将引导你了解云原生的基础概念,并重点介绍如何使用Kubernetes进行容器编排。我们将通过一个简易的示例来展示如何快速启动一个Kubernetes集群,并在其上运行一个简单的应用。无论你是云原生新手还是希望扩展现有知识,本文都将为你提供实用的信息和启发性的见解。
|
2月前
|
Kubernetes 持续交付 开发者
探索并实践Kubernetes集群管理与自动化部署
探索并实践Kubernetes集群管理与自动化部署
64 1
|
2月前
|
Kubernetes 监控 Cloud Native
Kubernetes集群的高可用性与伸缩性实践
Kubernetes集群的高可用性与伸缩性实践
83 1