【动手学计算机视觉】第十八讲:卷积神经网络之GoogLeNet

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 本文的主角GoogLeNet和上篇文章讲到的VGG出现在同一年ILSVRC比赛的舞台上,它在效果方面超过了VGG并取得了当年的冠军。虽然二者出自同一年,但是在模型方面却有着天壤之别,无论是在克服网络深度方面还是在输出层处理方面均提出了非常新颖的思路,本文就来详细介绍一下这个名噪一时的卷积神经网络模型。

前言

在前一篇文章介绍VGG时,我提到2014年对于计算机视觉领域是一个丰收的一年,在这一年的ImageNet图像识别挑战赛(ILSVRC,ImageNet Large Scale Visual Recognition Challenge)中出现了两个经典、影响至深的卷积神经网络模型,其中第一名是GoogLeNet、第二名是VGG。

没错,本文的主角就是2014年ILSVRC的第一名--GoogLeNet(Going Deeper with Convolutions),要注意的是,这个网络模型的名称是"GoogLeNet",而不是"GoogleNet",虽然只有一个大小写字母的却别,含义却不同,GoogLeNet之所以叫做这个名字,主要是为了想LeNet致敬。

GoogLeNet与VGG出现在同一年,二者自然有一些相似之处,但是两个模型更多的是差异性。

首先说一下GoogLeNet与VGG的相同之处:

  • 都提出了基础块的思想
  • 均是为了克服网络逐渐变深带来的问题

首先,说一下第一点--都提出了基础块的思想

前文已经介绍了,VGG使用代替的思想,这使得VGG在迁移性方面表现非常好,也因此得到了广泛的应用。而GoogLeNet也使用了基础块的思想,它引入了Inception块,想必说到这里应该接触过深度计算机视觉的同学应该恍然大悟,也许对GoogLeNet的概念已经变的模糊,但是Inception却如雷贯耳,目前在很多CNN模型中同样作为基础模块使用。

其次,说一下第二点--均是为了克服网络逐渐变深带来的问题

随着卷积神经网络模型的更新换代,我们发现网络层数逐渐变多,模型变的越来越深,这是因为提升模型效果最为直接有效的方法就是增加网络深度和宽度,但是,随着网络层数的加深、加宽,它也会带来很多负面影响,

  • 参数数量增加
  • 梯度消失和梯度爆炸
  • 计算复杂度增加

因此,从VGG、GoogLeNet开始,包括后面会讲到的ResNet,研究者逐渐把目光聚焦在"如何在增加网络深度和宽度的同时,避免上述这些弊端?"

不同的网络模型所采取的方式不同,这也就引出了VGG与GoogLe的不同之处,

  • 输出层不同
  • 克服网络加深弊端的方式不同

首先,说一下第一点--输出层不同

VGG是在LeNet、AlexNet的基础上引入了基础块的思想,但是在网络架构、输出等放并没有进行太多的改变,在输出层方面同样是采用连续三个全连接层,全连接层的输入是前面卷积层的输出经过reshape得到。

虽然GoogLeNet是向LeNet致敬,但是在GoogLeNet的身上却很难看到LeNet和AlexNet的影子,它的输出更是采用NiN的思想(Network in Network),它把全连接层编程了1*1的卷积层。

其次,说一下第二点--克服网络加深弊端的方式不同

VGG在克服网络加深带来的问题方面采用的是引入基础块的思想,但是整体上还是偏向于"更深",而GoogLeNet更加偏重于"更宽",它引入了并行网络结构的思想,每一层有4个不同的线路对输入进行处理,然后再块的输出部分在沿着通道维进行连接。

GoogLeNet通过对模型的大幅度改进,使得它在参数数量计算资源方面要明显优于VGG,但是GoogLeNet的模型复杂度相对于VGG也要高一些,因此,在迁移性方面VGG要优于GoogLeNet。

GoogLeNet模型

Inception块是GoogLeNet模型中一个非常重要的组成部分,因此,在介绍完整的GoogLeNet模型之前,我先来讲解一下Inception块的结构。

Inception块

2.png


上图就是就是Inception的结构,Inception分为两个版本:

  • 简化版
  • 降维版

二者主要的区别就在于1*1的卷积层,降维版在第2、3、4条线路添加了1*1的卷积层来减少通道维度,以减小模型复杂度,本文就以降维版为例来讲解GoogLeNet。

现在来看一下Inception的结构,可以很清楚的看出,它包含4条并行线路,其中,第1、2、3条线路分别采用了1*13*35*5,不同的卷积核大小来对输入图像进行特征提取,使用不同大小卷积核能够充分提取图像特征。其中,第2、3两条线路都加入了1*1的卷积层,这里要明确一点,第2、3两条线路的1*1与第1条线路1*1的卷积层的功能不同,第1条线路是用于特征提取,而第2、3条线路的目的是降低模型复杂度。第4条线路采用的不是卷积层,而是3*3的池化层。最后,4条线路通过适当的填充,使得每一条线路输出的宽和高一致,然后经过Filter Concatenation把4条线路的输出在通道维进行连接

上述就是Inception块的介绍,在GoogLeNet模型中,Inception块会被多次用到,下面就开始介绍GoogLeNet的完整模型结构。

GoogLeNet

GoogLeNet在网络模型方面与AlexNet、VGG还是有一些相通之处的,它们的主要相通之处就体现在卷积部分

  • AlexNet采用5个卷积层
  • VGG把5个卷积层替换成5个卷积块
  • GoogLeNet采用5个不同的模块组成主体卷积部分

3.png

上述就是GoogLeNet的结构,可以看出,和AlexNet统一使用5个卷积层、VGG统一使用5个卷积块不同,GoogLeNet在主体卷积部分是卷积层Inception块混合使用。另外,需要注意一下,在输出层GoogleNet采用全局平均池化,得到的是高和宽均为1的卷积层,而不是通过reshape得到的全连接层。

下面就来详细介绍一下GoogLeNet的模型结构。

模块1

第一个模块采用的是一个单纯的卷积层紧跟一个最大池化层。

卷积层:卷积核大小7*7,步长为2,输出通道数64

池化层:窗口大小3*3,步长为2,输出通道数64

模块2

第二个模块采用2个卷积层,后面跟一个最大池化层。

卷积层:卷积核大小3*3,步长为1,输出通道数192

池化层:窗口大小3*3,步长为2,输出通道数192

模块3

第三个模块采用的是2个串联的Inception块,后面跟一个最大池化层。

第一个Inception的4条线路输出的通道数分别是641283232,输出的总通道数是4条线路的加和,为256

第二个Inception的4条线路输出的通道数分别是1281929664,输出的总通道数为480

池化层:窗口大小3*3,步长为2,输出通道数480

模块4

第4个模块采用的是5个串联的Inception块,后面跟一个最大池化层。

第一个Inception的4条线路输出的通道数分别是1922084864,输出的总通道数为512

第二个Inception的4条线路输出的通道数分别是1602246464,输出的总通道数为512

第三个Inception的4条线路输出的通道数分别是1282566464,输出的总通道数为512

第四个Inception的4条线路输出的通道数分别是1122886464,输出的总通道数为528

第五个Inception的4条线路输出的通道数分别是256320128128,输出的总通道数为832

池化层:窗口大小3*3,步长为2,输出通道数832

模块5

第五个模块采用的是2个串联的Inception块

第一个Inception的4条线路输出的通道数分别是256320128128,输出的总通道数为832

第二个Inception的4条线路输出的通道数分别是384384128128,输出的总通道数为1024

输出层

前面已经多次提到,在输出层GoogLeNet与AlexNet、VGG采用3个连续的全连接层不同,GoogLeNet采用的是全局平均池化层,得到的是高和宽均为1的卷积层,然后添加丢弃概率为40%的Dropout,输出层激活函数采用的是softmax

激活函数

GoogLeNet每层使用的激活函数为ReLU激活函数。

编程实践

当我们拿到一个需求的时候,应该先对它进行一下分析、分解,针对GoogLeNet,我们通过分析可以把它分解成如下几个模块,

  • Inception块
  • 卷积层
  • 池化层
  • 线性层

通过上述分解,我们逐个来实现上述每个模块。

Inception块

前面讲解过程中已经详细介绍Inception块的结构,它包括4条线路,而对于Inception块最重要的参数就是每个线路输出的通道数,由于其中步长、填充方式、卷积核大小都是固定的,因此不需要我们进行传参。我们把4条线路中每层的输出通道数作为Inception块的入参,具体实现过程如下,

def inception_block(X, c1, c2, c3, c4, name):
    in_channels = int(X.get_shape()[-1])
    # 线路1
    with tf.variable_scope('conv1X1_{}'.format(name)) as scope:
        weight = tf.get_variable("weight", [1, 1, in_channels, c1])
        bias = tf.get_variable("bias", [c1])
    p1_1 = tf.nn.conv2d(X, weight, strides=[1, 1, 1, 1], padding="SAME")
    p1_1 = tf.nn.relu(tf.nn.bias_add(p1_1, bias))
    # 线路2
    with tf.variable_scope('conv2X1_{}'.format(name)) as scope:
        weight = tf.get_variable("weight", [1, 1, in_channels, c2[0]])
        bias = tf.get_variable("bias", [c2[0]])
    p2_1 = tf.nn.conv2d(X, weight, strides=[1, 1, 1, 1], padding="SAME")
    p2_1 = tf.nn.relu(tf.nn.bias_add(p2_1, bias))
    p2_shape = int(p2_1.get_shape()[-1])
    with tf.variable_scope('conv2X2_{}'.format(name)) as scope:
        weight = tf.get_variable("weight", [3, 3, p2_shape, c2[1]])
        bias = tf.get_variable("bias", [c2[1]])
    p2_2 = tf.nn.conv2d(p2_1, weight, strides=[1, 1, 1, 1], padding="SAME")
    p2_2 = tf.nn.relu(tf.nn.bias_add(p2_2, bias))

卷积及池化

在GoogLeNet中多处用到了卷积层和最大池化层,这些结构在AlexNet中都已经实现过,我们直接拿过来使用即可,

def conv_layer(self, X, ksize, out_filters, stride, name):
    in_filters = int(X.get_shape()[-1])
    with tf.variable_scope(name) as scope:
        weight = tf.get_variable("weight", [ksize, ksize, in_filters, out_filters])
        bias = tf.get_variable("bias", [out_filters])
    conv = tf.nn.conv2d(X, weight, strides=[1, stride, stride, 1], padding="SAME")
    activation = tf.nn.relu(tf.nn.bias_add(conv, bias))
    return activation
def pool_layer(self, X, ksize, stride):
    return tf.nn.max_pool(X, ksize=[1, ksize, ksize, 1], strides=[1, stride, stride, 1], padding="SAME")

线性层

GoogLeNet与AlexNet、VGG在输出层不同,AlexNet和VGG是通过连续的全连接层处理,然后输入到激活函数即可,而GoogLeNet需要进行全局平均池化后进行一次线性映射,对于这一点实现过程如下,

def linear(self, X, out_filters, name):
    in_filters = X.get_shape()[-1]
    with tf.variable_scope(name) as scope:
        w_fc = tf.get_variable("weight", shape=[in_filters, out_filters])
        b_fc = tf.get_variable("bias", shape=[out_filters], trainable=True)
    fc = tf.nn.xw_plus_b(X, w_fc, b_fc)
    return tf.nn.relu(fc)

搭建模型

上面几步已经把GoogLeNet主要使用的组件已经搭建完成,接下来要做的就是把它们组合到一起即可。这里需要注意一点,全局平均池化层的填充方式和前面卷积层、池化层使用的不同,这里需要使用VALID填充方式,

def create(self, X):
    # 模块1
    module1_1 = self.conv_layer(X, 7, 64, 2, "module1_1")
    pool_layer1 = self.pool_layer(module1_1, 3, 2)
    # 模块2
    module2_1 = self.conv_layer(pool_layer1, 1, 64, 1, "modul2_1")
    module2_2 = self.conv_layer(module2_1, 3, 192, 1, "module2_2")
    pool_layer2 = self.pool_layer(module2_2, 3, 2)
    # 模块3
    module3a = self.inception_block(pool_layer2, 64, (96, 128), (16, 32), 32, "3a")
    module3b = self.inception_block(module3a, 128, (128, 192), (32, 96), 64, "3b")
    pool_layer3 = self.pool_layer(module3b, 3, 2)
    # 模块4
    module4a = self.inception_block(pool_layer3, 192, (96, 208), (16, 48), 64, "4a")
    module4b = self.inception_block(module4a, 160, (112, 224), (24, 64), 64, "4b")
    module4c = self.inception_block(module4b, 128, (128, 256), (24, 64), 64, "4c")
    module4d = self.inception_block(module4c, 112, (144, 288), (32, 64), 64, "4d")
    module4e = self.inception_block(module4d, 256, (160, 320), (32, 128), 128, "4e")
    pool_layer4 = self.pool_layer(module4e, 3, 2)
    # 模块5
    module5a = self.inception_block(pool_layer4, 256, (160, 320), (32, 128), 128, "5a")
    module5b = self.inception_block(module5a, 384, (192, 384), (48, 128), 128, "5b")
    pool_layer5 = tf.nn.avg_pool(module5b, ksize=[1, 7, 7, 1], strides=[1, 1, 1, 1], padding="VALID")
    flatten = tf.reshape(pool_layer5, [-1, 1024])
    dropout = tf.nn.dropout(flatten, keep_prob=self.keep_prob)
    linear = self.linear(dropout, self.num_classes, 'linear')
        return tf.nn.softmax(linear)

验证

为了验证每一个模块输出的形状和原文中给出的是否一致,我使用numpy,生成了样本数为5的随机样本,看一下每一层的输出结果,

def main():
    X = np.random.normal(size=(5, 224, 224, 3))
    images = tf.placeholder("float", [5, 224, 224, 3])
    googlenet = GoogLeNet(1000, 0.4)
    writer = tf.summary.FileWriter("logs")
    with tf.Session() as sess:
        model = googlenet.create(images)
        sess.run(tf.global_variables_initializer())
        writer.add_graph(sess.graph)
        prob = sess.run(model, feed_dict={images: X})
        print(sess.run(tf.argmax(prob, 1)))
# 输出
module1_1:      (5, 112, 112, 64)
pool_layer1:    (5, 56, 56, 64)
module2_1:      (5, 56, 56, 64)
module2_2:      (5, 56, 56, 192)
pool_layer2:    (5, 28, 28, 192)
module3a:       (5, 28, 28, 256)
module3b:       (5, 28, 28, 480)
pool_layer3:    (5, 14, 14, 480)
module4a:       (5, 14, 14, 512)
module4b:       (5, 14, 14, 512)
module4c:       (5, 14, 14, 512)
module4d:       (5, 14, 14, 528)
module4e:       (5, 14, 14, 832)
pool_layer4:    (5, 7, 7, 832)
module5a:       (5, 7, 7, 832)
module5b:       (5, 7, 7, 1024)
pool_layer5:    (5, 1, 1, 1024)
flatten:        (5, 1024)
linear:         (5, 1000)

可以从上述输出可以看出,每一层的输出形状和原文中给出的一致,至于在不同场景、不同数据集下的表现效果,这需要针对性的进行调优。

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
14天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
72 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
1月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
287 55
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
190 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
11天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
1月前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
124 3
图卷积网络入门:数学基础与架构设计
|
1月前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
390 7
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
98 1