【动手学计算机视觉】第十七讲:卷积神经网络之VGG

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 2014年对于计算机视觉领域是一个丰收的一年,在这一年的ImageNet图像识别挑战赛(ILSVRC,ImageNet Large Scale Visual Recognition Challenge)中出现了两个经典、影响至深的卷积神经网络模型,其中第一名是GoogLeNet、第二名是VGG,都可以称得上是深度计算机视觉发展过程中的经典之作,尤其是其中的VGG,时至今日,依然经常被用作新型卷积神经网络的基础特征提取部分,本文就来详细的介绍一下这个经典的卷积神经网络模型,并逐步使用tensorflow实现VGG的搭建。

前言

91.png

2014年对于计算机视觉领域是一个丰收的一年,在这一年的ImageNet图像识别挑战赛(ILSVRC,ImageNet Large Scale Visual Recognition Challenge)中出现了两个经典、影响至深的卷积神经网络模型,其中第一名是GoogLeNet、第二名是VGG,都可以称得上是深度计算机视觉发展过程中的经典之作。虽然在名次上GoogLeNet盖过了VGG,但是在可迁移性方面GoogLeNet对比于VGG却有很大的差距,而且在模型构建思想方面对比于它之前的AlexNetLeNet做出了很大的改进,因此,VGG后来常作为后续卷积神经网络模型的基础模块,用于特征提取。直到5年后的今天,依然可以在很多新颖的CNN模型中可以见到VGG的身影,本文就来详细介绍一下这个经典的卷积神经网络模型。

VGG

VGG(VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION),是由牛津大学的研究者提出,它的名称也是以作者所在实验室而命名(Visual Geometry Group)。

前一篇文章介绍了经典的AlexNet,虽然它在识别效果方面非常令人惊艳,但是这些都是建立在对超参数进行大量的调整的基础上,而它并没有提出一种明确的模型设计规则以便指导后续的新网络模型设计,这也限制了它的迁移能力。因此,虽然它很知名,但是在近几年的模型基础框架却很少出现AlexNet的身影,反观VGG则成为了很多新模型基础框架的必选项之一,这也是它相对于AlexNet的优势之一:VGG提出用基础块代替网络层的思想,这使得它在构建深度网络模型时可以重复使用这些基础块。

正如前面所说,VGG使用了代替的思想,具体的来说,它提出了构建基础的卷积块全连接块来替代卷积层全连接层,而这里的是由多个输出通道相同的层组成。

92.png

VGG和AlexNet指代单一的模型不同,VGG其实包含多个不同的模型,从上图可以看出,它主要包括下列模型,

  • VGG-11
  • VGG-13
  • VGG-16
  • VGG-19

其中,后面的数字11、13、16、19是网络层数。

从图中可以看出,VGG的特点是每个卷积块(由1个或多个卷积层组成)后面跟随一个最大池化层,整体架构和AlexNet非常类似,主要区别就是把层替换成了块。

从图中红框标记可以看出,每个卷积块中输出通道数相同,另外从横向维度来看,不同模型在相同卷积块中输出通道也相同

下面就以比较常用的VGG-16这个模型为例来介绍一下VGG的模型架构。

VGG-16是由5个卷积块3个全连接层共8部分组成(回想一下,AlexNet也是由8个部分组成,只不过AlexNet是由5个卷积层和3个全连接层组成),下面详细介绍每一个部门的详细情况。

注意:前两篇文章我们在搭建LeNetAlexNet时会发现,不同层的卷积核、步长均有差别,这也是迁移过程中比较困难的一点,而在VGG中就没有这样的困扰,VGG卷积块中统一采用的是3*3的卷积核,卷积层的步长均为1,而在池化层窗口大小统一采用2*2,步长为2。因为每个卷积层、池化层窗口大小、步长都是确定的,因此要搭建VGG我们只需要关注每一层输入输出的通道数即可。

卷积块1

包含2个卷积层,输入是224*224*3的图像,输入通道数为3,输出通道数为64

卷积块2

包含2个卷积层,输入是上一个卷积块的输出,输入通道数为64,输出通道数为128

卷积块3

包含3个卷积层,输入是上一个卷积块的输出,输入通道数为128,输出通道数为256

卷积块4

包含3个卷积层,输入是上一个卷积块的输出,输入通道数为256,输出通道数为512

卷积块5

包含3个卷积层,输入是上一个卷积块的输出,输入通道数为512,输出通道数为512

全连接层1

输入为上一层的输出,输入通道数为前一卷积块输出reshape成一维的长度,输出通道数为4096

全连接层2

输入为上一层的输出,输入通道数为4096,输出通道数为4096

全连接层3

输入为上一层的输出,输入通道数为4096,输出通道数为1000

激活函数

VGG中每层使用的激活函数为ReLU激活函数。

由于VGG非常经典,所以,网络上有关于VGG-16、VGG-19预训练的权重,为了为了展示一下每一层的架构,读取VGG-16预训练权重看一下,

import numpy as np
path = "vgg16.npy"
layers = ["conv1_1", "conv1_2",
          "conv2_1", "conv2_2",
          "conv3_1", "conv3_2", "conv3_3",
          "conv4_1", "conv4_2", "conv4_3",
          "conv5_1", "conv5_2", "conv5_3",
          "fc6", "fc7", "fc8"]
data_dict = np.load(path, encoding='latin1').item()
for layer in layers:
    print(data_dict[layer][0].shape)
# 输出
(3, 3, 3, 64)
(3, 3, 64, 64)
(3, 3, 64, 128)
(3, 3, 128, 128)
(3, 3, 128, 256)
(3, 3, 256, 256)
(3, 3, 256, 256)
(3, 3, 256, 512)
(3, 3, 512, 512)
(3, 3, 512, 512)
(3, 3, 512, 512)
(3, 3, 512, 512)
(3, 3, 512, 512)
(25088, 4096)
(4096, 4096)
(4096, 1000)

网络共16层,卷积层部分为1*4维的,其中从前到后分别是卷积核高度卷积核宽度输入数据通道数输出数据通道数

到此为止,应该已经了解了VGG的模型结构,下面就开始使用tensorflow编程实现一下 VGG。

编程实践

因为 VGG非常经典,所以网络上有VGG的预训练权重,我们可以直接读取预训练的权重去搭建模型,这样就可以忽略对输入和输出通道数的感知,要简单很多,但是为了更加清楚的理解网络模型,在这里还是从最基本的部分开始搭建,自己初始化权重和偏差,这样能够更加清楚每层输入和输出的结构。

卷积块

经过前面的介绍应该了解,VGG的主要特点就在于卷积块的使用,因此,我们首先来完成卷积块部分的编写。在完成一段代码的编写之前,我们应该首先弄明白两点:输入输出

输出当然很明确,就是经过每个卷积块(多个卷积层)卷积、激活后的tensor,我们要明确的就是应该输入哪些参数?

最重要的3个输入:要进行运算的tensor每个卷积块内卷积层的个数输出通道数

当然,我们为了更加规范的搭建模型,也需要对每一层规定一个命名空间,这样还需要输入每一层的名称。至于输入通道数,我们可以通过tensorflow的get_shape函数获取,

def conv_block(self, X, num_layers, block_index, num_channels):
    in_channels = int(X.get_shape()[-1])
    for i in range(num_layers):
        name = "conv{}_{}".format(block_index, i)
        with tf.variable_scope(name) as scope:
            weight = tf.get_variable("weight", [3, 3, in_channels, num_channels])
            bias = tf.get_variable("bias", [num_channels])
        conv = tf.nn.conv2d(X, weight, strides=[1, 1, 1, 1], padding="SAME")
        X = tf.nn.relu(tf.nn.bias_add(conv, bias))
        in_channels = num_channels
        print(X.get_shape())
    return X

从代码中可以看出,有几个参数是固定的:

  • 卷积窗口大小
  • 步长
  • 填充方式
  • 激活函数

到此为止,我们就完成了VGG最核心一部分的搭建。

池化层

之前看过前两篇关于AlexNet、LeNet的同学应该记得,池化层有两个重要的参数:窗口大小步长由于在VGG中这两个超参数是固定的,因此,不用再作为函数的入参,直接写在代码中即可。

def max_pool(self, X):
    return tf.nn.max_pool(X, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")

全连接层

至于全连接层,和前面介绍的两个模型没有什么区别,我们只需要知道输出通道数即可,每一层的输出为上一层的输出,

def full_connect_layer(self, X, out_filters, name):
    in_filters = X.get_shape()[-1]
    with tf.variable_scope(name) as scope:
        w_fc = tf.get_variable("weight", shape=[in_filters, out_filters])
        b_fc = tf.get_variable("bias", shape=[out_filters], trainable=True)
    fc = tf.nn.xw_plus_b(X, w_fc, b_fc)
    return tf.nn.relu(fc)

由于不同网络模型之前主要的不同之处就在于模型的结构,至于训练和验证过程中需要的准确率、损失函数、优化函数等都大同小异,在前两篇文章中已经实现了训练和验证部分,所以这里就不再赘述。在本文里,我使用numpy生成一个随机的测试集测试一下网络模型是否搭建成功即可。

测试

首先使用numpy生成符合正态分布的随机数,形状为(5, 224, 224, 3),5为批量数据的大小,244为输入图像的尺寸,3为输入图像的通道数,设定输出类别数为1000,

def main():
    X = np.random.normal(size=(5, 224, 224, 3))
    images = tf.placeholder("float", [5, 224, 224, 3])
    vgg = VGG(1000)
    writer = tf.summary.FileWriter("logs")
    with tf.Session() as sess:
        model = vgg.create(images)
        sess.run(tf.global_variables_initializer())
        writer.add_graph(sess.graph)
        prob = sess.run(model, feed_dict={images: X})
        print(sess.run(tf.argmax(prob, 1)))
# 输出
(5, 224, 224, 64)
(5, 224, 224, 64)
(5, 112, 112, 128)
(5, 112, 112, 128)
(5, 56, 56, 256)
(5, 56, 56, 256)
(5, 56, 56, 256)
(5, 28, 28, 512)
(5, 28, 28, 512)
(5, 28, 28, 512)
(5, 14, 14, 512)
(5, 14, 14, 512)
(5, 14, 14, 512)
(5, 4096)
(5, 4096)
(5, 1000)
[862 862 862 862 862]

可以对比看出,每层网络的尺寸和前面加载的预训练模型是匹配的,下面在看一下tensorboard的结果,

$ tensorboard --logdir="logs"

结果,

93.gif


到此为止,就完成了VGG的搭建和测试。

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
18天前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
11天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
22天前
|
机器学习/深度学习 监控 自动驾驶
卷积神经网络有什么应用场景
【10月更文挑战第23天】卷积神经网络有什么应用场景
31 2
|
22天前
|
机器学习/深度学习 自然语言处理 算法
什么是卷积神经网络
【10月更文挑战第23天】什么是卷积神经网络
30 1
|
25天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
72 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
12天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
29 0
|
15天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。
|
21天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第26天】在这篇文章中,我们将深入探讨卷积神经网络(CNN)的基本原理、结构和应用。CNN是深度学习领域的一个重要分支,广泛应用于图像识别、语音处理等领域。我们将通过代码示例和实际应用案例,帮助读者更好地理解CNN的概念和应用。
|
23天前
|
机器学习/深度学习 算法 计算机视觉
深度学习与生活:如何利用卷积神经网络识别日常物品
【10月更文挑战第24天】在这篇文章中,我们将探索深度学习如何从理论走向实践,特别是卷积神经网络(CNN)在图像识别中的应用。通过一个简单的示例,我们将了解如何使用CNN来识别日常生活中的物体,如水果和家具。这不仅是对深度学习概念的一次直观体验,也是对技术如何融入日常生活的一次深刻反思。文章将引导读者思考技术背后的哲理,以及它如何影响我们的生活和思维方式。

热门文章

最新文章

下一篇
无影云桌面