【动手学计算机视觉】第十五讲:卷积神经网络之LeNet

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: LeNet是由2019年图灵奖获得者、深度学习三位顶级大牛之二的Yann LeCun、Yoshua Bengio于1998年提出,它也被认为被认为是最早的卷积神经网络模型。但是,由于算力和数据集的限制,卷积神经网络提出之后一直都被传统目标识别算法(特征提取+分类器)所压制。终于在沉寂了14年之后的2012年,AlexNet在ImageNet挑战赛上一骑绝尘,使得卷积神经网络又一次成为了研究的热点。尽管近几年深度卷积网络非常热门,LeNet基本处于被忽略的状态,但是它的思想依然对CNN的学习有着不可忽视的价值。本文就详细介绍一下LeNet的结构,同时会详细介绍网络模型的搭建方法。

前言

78.png

提起卷积神经网络,也许可以避开VGG、GoogleNet,甚至可以忽略AleNet,但是很难不提及LeNet。

LeNet是由2019年图灵奖获得者、深度学习三位顶级大牛之二的Yann LeCun、Yoshua Bengio于1998年提出(Gradient-based learning applied to document recognition),它也被认为被认为是最早的卷积神经网络模型。但是,由于算力和数据集的限制,卷积神经网络提出之后一直都被传统目标识别算法(特征提取+分类器)所压制。终于在沉寂了14年之后的2012年,AlexNet在ImageNet挑战赛上一骑绝尘,使得卷积神经网络又一次成为了研究的热点。

近几年入门计算机视觉的同学大多数都是从AlexNet甚至更新的网络模型入手,了解比较多的就是R-CNN系列和YOLO系列,在很多知名的课程中对LeNet的介绍也是非常浅显或者没有介绍。虽然近几年卷积神经网络模型在LeNet的基础上加入了很多新的单元,在效果方面要明显优于LeNet,但是作为卷积神经网络的基础和源头,它的很多思想对后来的卷积神经网络模型具有很深的影响,因此,我认为了解一下LeNet还是非常有必要的。

本文首先介绍一下LeNet的网络模型,然后使用tensorflow来一步一步实现LeNet。

LeNet

79.png


上图就是LeNet的网络结构,LeNet又被称为LeNet-5,其之所以称为这个名称是由于原始的LeNet是一个5层的卷积神经网络,它主要包括两部分:

  • 卷积层
  • 全连接层

其中卷积层数为2,全连接层数为3。

这里需要注意一下,之前在介绍卷积、池化时特意提到,在网络层计数中池化和卷积往往是被算作一层的,虽然池化层也被称为"层",但是它不是一个独立的运算,往往都是紧跟着卷积层使用,因此它不单独计数。在LeNet中也是这样,卷积层块其实是包括两个单元:卷积层与池化层

在网络模型的搭建过程中,我们关注的除了网络层的结构,还需要关注一些超参数的设定,例如,卷积层中使用卷积核的大小、池化层的步幅等,下面就来介绍一下LeNet详细的网络结构和参数。

第一层:卷积层

卷积核大小为5*5,输入通道数根据图像而定,例如灰度图像为单通道,那么通道数为1,彩色图像为三通道,那么通道数为3。虽然输入通道数是一个变量,但是输出通道数是固定的为6

池化层中窗口大小为2*2,步幅为2

第二层:卷积层

卷积核大小为5*5,输入通道数即为上一层的输出通道数6,输出通道数为16

池化层和第一层相同,窗口大小为2*2,步幅为2

第三层:全连接层

全连接层顾名思义,就是把卷积层的输出进行展开,变为一个二维的矩阵(第一维是批量样本数,第二位是前一层输出的特征展开后的向量),输入大小为上一层的输出16,输出大小为120

第四层:全连接层

输入大小为120,输出大小为84

第五层:全连接层

输入大小为84,输出大小为类别个数,这个根据不同任务而定,假如是二分类问题,那么输出就是2,对于手写字识别是一个10分类问题,那么输出就是10。

激活函数

前面文章中详细的介绍了激活函数的作用和使用方法,本文就不再赘述。激活函数有很多,例如Sigmoid、relu、双曲正切等,在LeNet中选取的激活函数为Sigmoid

模型构建

80.jpg如果已经了解一个卷积神经网络模型的结构,知道它有哪些层、每一层长什么样,那样借助目前成熟的机器学习平台是非常容易的,例如tensorflow、pytorch、mxnet、caffe这些都是高度集成的深度学习框架,虽然在强化学习、图神经网络中表现一般,但是在卷积神经网络方面还是很不错的。我绘制了模型构建的过程,详细的可以看一下上图,很多刚入门的同学会把tensorflow使用、网络搭建看成已经非常困难的事情,其实理清楚之后发现并没有那么复杂,它主要包括如下几个部分:

  • 数据输入
  • 网络模型
  • 训练预测

其中,重点之处就在于网络模型的搭建,需要逐层的去搭建一个卷积神经网络,复杂程度因不同的模型而异。训练测试过程相对简单一些,可以通过交叉熵、均方差等构建损失函数,然后使用深度学习框架自带的优化函数进行优化即可,代码量非常少。LeNet、AlexNet、VGG、ResNet等,各种卷积神经网络模型主要的区别之处就在于网络模型,但是网络搭建的过程是相同的,均是通过上述流程进行搭建,因此,本文单独用一块内容介绍模型搭建的过程,后续内容不再介绍网络模型的搭建,会直接使用tensorflow进行编程实践。

编程实践

完整代码请查看github项目:aiLearnNotes

https://github.com/Jackpopc/aiLearnNotes/blob/master/computer_vision/LeNet.py

首先需要说明一下,后续的内容中涉及网络模型搭建的均会选择tensorflow进行编写。虽然近几年pytorch的势头非常迅猛,关于tensorflow的批评之声不绝于耳,但是我一向认为,灵活性和易用性总是成反比的,tensorflow虽然相对复杂,但是它的灵活性非常强,而且支持强大的可视化tensorboard,虽然pytorch也可以借助tensorboard实现可视化,但是这样让我觉得有一些"不伦不类"的感觉,我更加倾向于一体化的框架。此外,有很多同学认为Gluon、keras非常好用,的确,这些在tensorflow、mxnet之上进一步封装的高级深度学习框架非常易用,很多参数甚至不需要开发者去定义,但是正是因为这样,它们已经强行的预先定义在框架里了,可想而知,它的灵活性是非常差的。因此,综合灵活性、一体化、丰富性等方面的考虑,本系列会采用tensorflow进行编程实践。

其次,需要说明的是本系列重点关注的是网络模型,因此,关于数据方面会采用MNIST进行实践。MNIST是一个成熟的手写字数据集,它提供了易用的接口,方便读取和处理。

在使用tensorflow接口读取MNIST时,如果本地有数据,它会从本地加载,否则它会从官网下载数据,如果由于代理或者网速限制的原因自动下载数据失败,可以手动从官网下载数据放在MNIST目录下,数据包括4个文件,分别是:

  • train-images-idx3-ubyte.gz
  • train-labels-idx1-ubyte.gz
  • t10k-images-idx3-ubyte.gz
  • t10k-labels-idx1-ubyte.gz

它们分别是训练数据集和标签,测试数据集和标签。

可能会有人有疑问,手写体识别不是图像吗?为什么是gz的压缩包?因为作者对手写体进行了序列化处理,方便读取,数据原本是衣服单通道28*28的灰度图像,处理后是784的向量,我们可以通过一段代码对它可视化一下

from matplotlib import pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST", one_hot=True)
for i in range(12):
    plt.subplot(3, 4, i+1)
    img = mnist.train.images[i + 1]
    img = img.reshape(28, 28)
    plt.imshow(img)
plt.show()

通过读取训练集中的12副图像,然后把它修改成28*28的图像,显示之后会发现和我们常见的图像一样,

81.jpg


下面开始一步一步进行搭建网络LeNet,由前面介绍的模型构建过程可以知道,其中最为核心的就是搭建模型的网络架构,所以,首先先搭建网络模型,

82.png

卷积的运算是符合上述公式的,因此,首先构造第一层网络,输入为批量784维的向量,需要首先把它转化为28*28的图像,然后初始化卷积核,进行卷积、激活、池化运算,

X = tf.reshape(X, [-1, 28, 28, 1])
w_1 = tf.get_variable("weights", shape=[5, 5, 1, 6])
b_1 = tf.get_variable("bias", shape=[6])
conv_1 = tf.nn.conv2d(X, w_1, strides=[1, 1, 1, 1], padding="SAME")
act_1 = tf.sigmoid(tf.nn.bias_add(conv_1, b_1))
max_pool_1 = tf.nn.max_pool(act_1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")

然后构建第二层网络,

w_2 = tf.get_variable("weights", shape=[5, 5, 6, 16])
b_2 = tf.get_variable("bias", shape=[16])
conv_2 = tf.nn.conv2d(max_pool_1, w_2, strides=[1, 1, 1, 1], padding="SAME")
act_2 = tf.nn.sigmoid(tf.nn.bias_add(conv_2, b_2))
max_pool_2 = tf.nn.max_pool(act_2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")

到这里,卷积层就搭建完了,下面就开始搭建全连接层。

首先需要把卷积层的输出进行展开成向量,

flatten = tf.reshape(max_pool_2, shape=[-1, 2 * 2 * 16])

然后紧接着是3个全连接层,

# 全连接层1
with tf.variable_scope("fc_1") as scope:
    w_fc_1 = tf.get_variable("weight", shape=[2 * 2 * 16, 120])
    b_fc_1 = tf.get_variable("bias", shape=[120], trainable=True)
fc_1 = tf.nn.xw_plus_b(flatten, w_fc_1, b_fc_1)
act_fc_1 = tf.nn.sigmoid(fc_1)
# 全连接层2
with tf.variable_scope("fc_2") as scope:
    w_fc_2 = tf.get_variable("weight", shape=[120, 84])
    b_fc_2 = tf.get_variable("bias", shape=[84], trainable=True)
fc_2 = tf.nn.xw_plus_b(act_fc_1, w_fc_2, b_fc_2)
act_fc_2 = tf.nn.sigmoid(fc_2)
# 全连接层3
with tf.variable_scope("fc_3") as scope:
    w_fc_3 = tf.get_variable("weight", shape=[84, 10])
    b_fc_3 = tf.get_variable("bias", shape=[10], trainable=True)
fc_3 = tf.nn.xw_plus_b(act_fc_2, w_fc_3, b_fc_3)

这样就把整个网络模型搭建完成了,输入是批量图像X,输出是预测的图像,输出是一个10维向量,每一维的含义是当前数字的概率,选择概率最大的位置,就是图像对应的数字。

完成了网络模型的搭建,它能够将输入图像转化成预测标签进行输出,接下来要做的就是训练和测试部分。

def train():
    # 1. 输入数据的占位符
    x = tf.placeholder(tf.float32, [None, 784])
    y = tf.placeholder(tf.float32, [BATCH_SIZE, 10])
    # 2. 初始化LeNet模型,构造输出标签y_
    le = LeNet()
    y_ = le.create(x)
    # 3. 损失函数,使用交叉熵作为损失函数
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y_, labels=y))
    # 4. 优化函数,首先声明I个优化函数,然后调用minimize去最小化损失函数
    optimizer = tf.train.AdamOptimizer()
    train_op = optimizer.minimize(loss)
    # 5. summary用于数据保存,用于tensorboard可视化
    tf.summary.scalar("loss", loss)
    merged = tf.summary.merge_all()
    writer = tf.summary.FileWriter("logs")
    # 6. 构造验证函数,如果对应位置相同则返回true,否则返回false
    correct_pred = tf.equal(tf.argmax(y_, 1), tf.argmax(y, 1))
    # 7. 通过tf.cast把true、false布尔型的值转化为数值型,分别转化为1和0,然后相加就是判断正确的数量
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    # 8. 初始化一个saver,用于后面保存训练好的模型
    saver = tf.train.Saver()
    with tf.Session() as sess:
        # 9. 初始化变量
        sess.run((tf.global_variables_initializer()))
        writer.add_graph(sess.graph)
        i = 0
        for epoch in range(5):
            for step in range(1000):
                # 10. feed_dict把数据传递给前面定义的占位符x、y
                batch_xs, batch_ys = mnist.train.next_batch(BATCH_SIZE)
                summary, loss_value, _ = sess.run(([merged, loss, train_op]),
                                                  feed_dict={x: batch_xs,
                                                             y: batch_ys})
                print("epoch : {}----loss : {}".format(epoch, loss_value))
                # 11. 记录数据点
                writer.add_summary(summary, i)
                i += 1
        # 验证准确率
        test_acc = 0
        test_count = 0
        for _ in range(10):
            batch_xs, batch_ys = mnist.test.next_batch(BATCH_SIZE)
            acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys})
            test_acc += acc
            test_count += 1
        print("accuracy : {}".format(test_acc / test_count))
        saver.save(sess, os.path.join("temp", "mode.ckpt"))

上述就是训练部分的完整代码,在代码中已经详细的注释了每个部分的功能,分别包含数据记录、损失函数、优化函数、验证函数、训练过程等,然后运行代码可以看到效果,


...
epoch : 4----loss : 0.07602085173130035
epoch : 4----loss : 0.05565792694687843
epoch : 4----loss : 0.08458487689495087
epoch : 4----loss : 0.012194767594337463
epoch : 4----loss : 0.026294417679309845
epoch : 4----loss : 0.04952147603034973
accuracy : 0.9953125

准确率为99.5%,可以看得出,在效果方面,LeNet在某些任务方面并不比深度卷积神经网络差。

打开tensorboard可以直观的看到网络的结构、训练的过程以及训练中数据的变换,

$ tensorboard --logdir=logs

下面看看tensorboard可视化效果,

83.gif


通过损失函数的变化过程可以看出,训练过程在2000步左右基本达到了最优解,


84.png



相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
14天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
72 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
1月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
287 55
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
190 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
11天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
1月前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
124 3
图卷积网络入门:数学基础与架构设计
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
390 7
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
98 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新