PolarDB-X on OSS: 冷热数据分离存储

本文涉及的产品
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介: 作者:君启在即将发布的PolarDB-X 5.4.14版本中,我们将基于OSS存储服务,推出冷热数据分离存储这一新功能。在这一功能的基础上,您可以便捷地将冷数据从源表中剥离出来,归档至更低成本的OSS中,形成一张归档表;归档表支持高效的主键与索引点查、复杂分析型查询,满足高可用、MySQL兼容性和任意时间点闪回等特性。您可以像访问MySQL表一样来访问归档表,也可以用开源大数据产品接入OSS的归档数据。

在即将发布的PolarDB-X 5.4.14版本中,我们将基于OSS存储服务,推出冷热数据分离存储这一新功能。在这一功能的基础上,您可以便捷地将冷数据从源表中剥离出来,归档至更低成本的OSS中,形成一张归档表;归档表支持高效的主键与索引点查、复杂分析型查询,满足高可用、MySQL兼容性和任意时间点闪回等特性。您可以像访问MySQL表一样来访问归档表,也可以用开源大数据产品接入OSS的归档数据。



为什么需要冷热分离?


在数据库使用过程中,每天有大量的数据写入和更新。然而,通常只有时间邻近的,如一个月内,甚至一周内的数据才会被频繁更新和访问。而剩下的大量数据,都默默躺在磁盘的角落中,给存储空间带来了极大的浪费,也增加了数据库维护的成本。我们将前者中提到的频繁访问数据称为热数据,后者则称为冷数据


通过对多位大型政企客户的走访和交流,我们感受到了开发者们对于冷热分离存储的迫切需求。何谓冷热分离?从字面意义上来理解,就是将热数据保留在高性能的存储设备中,用于应对日常频繁的写入与更新,满足用户对事务型数据处理的需要;冷数据则被迁移到低成本的存储设备里(这一过程也被称为“归档”),减轻热数据的维护压力,提供查询和局部订正的功能。


虽然不被频繁访问,冷数据却是十分具有价值的。它记录着用户的历史数据,例如电商的历史订单、银行系统的历史交易记录等。这些访问需求对个人用户来说是低频的,但放到整个电商用户群体,或是银行用户群体中,则是一份不小的workload。冷数据的分析处理能给用户带来很多商业上的 insight,帮助用户做出决策。因此还需要支持在线分析型数据处理的能力。跨越冷热数据的Join(连接)、Aggregation(聚合)是开发者们经常使用的分析手段。
因此,在PolarDB-X的冷热分离存储设计中,我们兼顾了高性能的点查和分析型查询,来满足不同用户对冷数据的访问需求。



为何选择OSS?


阿里云对外提供两类云存储服务:块存储与对象存储。其中块存储如ESSD等,是数据库事实上采取的存储方式,配备了RDMA网络服务和高性能SSD盘来提升访问性能;而对象存储如OSS,则利用低廉的HDD盘和标准网络,对外提供低成本、海量空间的存储服务。


PolarDB-X数据库原本的存储方式采用了Paxos三副本高可用集群,格式为InnoDB行存。在冷热分离存储架构中,我们将冷数据迁移到阿里云OSS对象存储中,并采用开源列存格式ORC。阿里云的OSS 对象存储服务本身保障了 12个9 的高可用性,因此我们采用了单副本的存储方式,这与 paxos 的三副本有所不同。


结合OSS单位存储的低成本,和ORC格式本身的压缩比,我们可以得到下列一组对比数据,来形成直观的感受:

ORC 列存 on OSS

InnoDB 行存

存储单价

0.12 元/GB/月(本地冗余)0.15 元/GB/月(同城冗余)

0.72 元/GB/月(物理机 SSD)

副本数

1(底层多副本对用户透明)

3(Paxos 三副本)

压缩比

0.20x(实测 lineitem SF=100 占用空间 15.6GB)

1.55x(实测lineitem SF=50 占用空间 61GB)

最终单价

0.024 元/GB/月

1.12 元/GB/月


注:表中所用价格有时效性,具体以产品显示价格为准。


优势特性


TTL(time-to-live)


如何将冷数据从InnoDB行存中剥离出来?这是一个令很多开发者头疼的问题。如果使用delete from 语句 + where条件的形式来删除冷数据,很可能会因为扫描行数太多、数据太过分散,而造成锁表,影响整个数据库实例的访问;如果提前按照时间进行分区,再逐个将旧时间分区drop掉,则许多不适合按照时间分区的表将会束手无策。


针对用户反馈的这一实际问题,PolarDB-X 引入了TTL(time-to-live)这一新特性来帮助用户完成冷热数据剥离。用户无需手动维护,而是通过提前指定起始时间、分区大小和过期时间等信息,来完成数据的自动过期。我们在更底部的存储层将每张物理表做进一步的透明分区,数据按照最近的更新时间被集中到一起。


例如对于订单表t_orders,用户按照订单id进行哈希分区。引入了TTL之后,每个分区被进一步透明划分。旧时间分区(图中的2022-01分区)的过期,如同撕掉便利贴一样,在不锁表、不手动分区的情况下完成冷热数据的剥离。



关于TTL的具体使用,可以参考官网文档:什么是TTL功能


高性能查询


当冷数据从主库中剥离出来,归档至OSS存储服务后,我们就得到了一张以OSS为存储载体的归档表。它完全兼容MySQL数据类型和各种查询方式,在低成本、高可用的前提下,能带来与主表一致的使用体验。


为了满足不同用户对历史数据的查询需要,我们在设计上兼顾了点查和复杂分析型查询。对此我们进行了相应的测评。由于PolarDB-X on OSS 使用列存,在报表查询中有天然的优势,因此相比于PolarDB-X on MySQL 行存模式,TPC-H测试成绩有了大幅提升;1亿行数据量下的Sysbench点查测试也显示,归档表可以满足历史数据的查询要求。


在实现以上功能的过程中,最为关键的设计是文件系统、多级缓存、多级索引与查询裁剪。此外还包括列存索引选择、向量化计算、AGG加速等,我们都将在后续的文章中详细介绍。


TPC-H性能测试


规格


  • CPU:6 * 16C
  • 内存:6 * 128GB
  • SF = 100 (TPC-H 100GB)


总耗时约89s (PolarDB-X on MySQL 总耗时 150s)



Sysbench 性能测试


规格


  • 压测ECS:1 * 8C32G
  • CN:6 * 16C128G
  • Sysbench表行数: 1亿
  • 并发数:100


sysbench性能测试数据如下:

查询类型

QPS

RT(95th percent) 单位: ms

主键点查

21762.46

6.79

主键范围查询

10769.62

167.44

二级索引点查

2760.82

55.82


一键迁移


完成了冷热数据剥离后,如何将数据快速归档到OSS上呢?我们基于MySQL标准语法,提供了非常简易便捷的方式,只需要执行一条建表语句:


CREATE TABLE [oss_table_name] LIKE [innodb_table_name] 
 ENGINE = 'OSS' ARCHIVE_MODE = 'TTL'


执行后,OSS表将克隆InnoDB表的表结构,免去用户对归档表结构的设计;同时,冷数据归档表和源表被绑定起来,源表过期的数据将自动导入到归档表中。此后,用户可以像访问普通表一样,通过SQL来完成包括点查、范围查询、复杂分析型查询在内的各种数据访问。


手动强制过期


如果您想要更灵活的过期和归档操作,下列语句可以让您手动过期数据,并将过期数据导入至OSS中:


ALTER TABLE [innodb_table_name] EXPIRE LOCAL PARTITION [local_partition_name]


更多特性


任意时间点备份与闪回


在阿里云官方售卖的PolarDB-X 企业版中,支持了冷数据多副本备份与异地容灾。此外,PolarDB-X 将OSS归档表的版本控制与TSO结合起来,支持将整张表恢复到任意时间点之前的状态,也支持通过指定时间点来完成快照读。
您可以使用下列的闪回语句,让整张OSS归档表回到任意时间点之前的状态:

ALTER TABLE [oss_table_name] AS OF timestamp 'yyyy-mm-dd hh:mm:ss'

通过下列语句,指定时间点,完成在OSS归档表上的快照读:

SELECT xxx FROM [oss_table_name] AS OF timestamp '2022-01-01 01:02:03'

MySQL兼容性


PolarDB-X使用开源格式ORC来作为数据存储格式。ORC起源于Hive生态,其数据类型相比于MySQL有许多受限制的地方,例如不支持高精度的Decimal、不支持Collation、时间表示范围不够大、不支持Time类型等问题。因此,在ORC格式的基础上,想要提供MySQL风格的查询体验,还需要填补这一鸿沟。
为了给用户提供与MySQL一致的使用体验,我们精心设计了一套兼容MySQL的数据类型处理方案。包括time类型支持、基于collation的字符串查找、基于字节序的Decimal数值搜索等,构建起了从Hive生态到MySQL生态的桥梁。


开放性


我们将提供轻量级的ORC SDK。您可以通过ORC Connector 和catalog,将OSS上存储的ORC文件作为数据源,轻松地完成Spark、Flink、Presto等开源大数据产品的接入。
在开源版本中,您还可以使用其他存储设备或服务来存放归档表,只需在执行create table时,指定Engine参数的值,如Engine = 'S3' / Engine = 'local_disk' 等,将归档表存放在S3存储服务或本地磁盘上。


演示视频


冷热分离演示视频


总结


PolarDB-X 冷热分离存储充分利用了OSS服务成本低、容量大的优良特性,将冷数据快速高效地从在线库中剥离出来,减轻了数据维护压力,降低了数据存储成本。同时,提供与MySQL兼容的访问方式,兼顾点查与分析型查询的性能,并支持大数据产品的接入。未来我们将在冷热数据分离这一赛道上不断前进。


相关实践学习
快速体验PolarDB开源数据库
本实验环境已内置PostgreSQL数据库以及PolarDB开源数据库:PolarDB PostgreSQL版和PolarDB分布式版,支持一键拉起使用,方便各位开发者学习使用。
目录
相关文章
|
2月前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
在9月20日2024云栖大会上,阿里云智能集团副总裁,数据库产品事业部负责人,ACM、CCF、IEEE会士(Fellow)李飞飞发表《从数据到智能:Data+AI驱动的云原生数据库》主题演讲。他表示,数据是生成式AI的核心资产,大模型时代的数据管理系统需具备多模处理和实时分析能力。阿里云瑶池将数据+AI全面融合,构建一站式多模数据管理平台,以数据驱动决策与创新,为用户提供像“搭积木”一样易用、好用、高可用的使用体验。
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
|
2月前
|
人工智能 关系型数据库 分布式数据库
拥抱Data+AI|“全球第一”雅迪如何实现智能营销?DMS+PolarDB注入数据新活力
针对雅迪“云销通App”的需求与痛点,本文将介绍阿里云瑶池数据库DMS+PolarDB for AI提供的一站式Data+AI解决方案,助力销售人员高效用数,全面提升销售管理效率。
|
1月前
|
存储 弹性计算 数据管理
阿里云对象存储OSS收费标准:存储、流量和请求等多个计费项详解
阿里云对象存储OSS提供多样化的计费模式,涵盖存储、流量、请求等多项费用。存储费用方面,按量付费标准型为0.09元/GB/月,包年包月则有9元40GB等多种选择。流量费用仅对公网出方向收费,价格区间从0.25至0.50元/GB不等,支持按量付费与流量包抵扣两种方式。更多详情及精准报价,欢迎访问阿里云OSS官方页面。
1406 1
|
2月前
|
存储 弹性计算 数据管理
阿里云对象存储OSS收费标准,存储、流量和请求等多个计费项
阿里云对象存储OSS提供按量付费与包年包月两种计费方式,涵盖存储、流量、请求等费用。标准存储按量付费0.09元/GB/月,包年包月40GB起售,价格9元/年。公网流量出方向收费,内网及上传免费。具体费用视使用情况而定,详情见官网。
418 0
|
3月前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
阿里云瑶池在2024云栖大会上重磅发布由Data+AI驱动的多模数据管理平台DMS:OneMeta+OneOps,通过统一、开放、多模的元数据服务实现跨环境、跨引擎、跨实例的统一治理,可支持高达40+种数据源,实现自建、他云数据源的无缝对接,助力业务决策效率提升10倍。
|
4月前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
阿里云数据库重磅升级!元数据服务OneMeta + OneOps统一管理多模态数据
|
4月前
|
存储 监控 数据可视化
SLS 虽然不是直接使用 OSS 作为底层存储,但它凭借自身独特的存储架构和功能,为用户提供了一种专业、高效的日志服务解决方案。
【9月更文挑战第2天】SLS 虽然不是直接使用 OSS 作为底层存储,但它凭借自身独特的存储架构和功能,为用户提供了一种专业、高效的日志服务解决方案。
198 9
|
5月前
|
存储 SQL Cloud Native
揭秘!PolarDB-X存储引擎如何玩转“时间魔术”?Lizard多级闪回技术让你秒回数据“黄金时代”!
【8月更文挑战第25天】PolarDB-X是一款由阿里巴巴自主研发的云原生分布式数据库,以其高性能、高可用性和出色的可扩展性著称。其核心竞争力之一是Lizard存储引擎的多级闪回技术,能够提供高效的数据恢复与问题诊断能力。本文通过一个电商公司的案例展示了一级与二级闪回技术如何帮助快速恢复误删的大量订单数据,确保业务连续性不受影响。一级闪回通过维护最近时间段内历史数据版本链,支持任意时间点查询;而二级闪回则通过扩展数据保留时间并采用成本更低的存储方式,进一步增强了数据保护能力。多级闪回技术的应用显著提高了数据库的可靠性和灵活性,为企业数据安全保驾护航。
58 1
|
5月前
|
数据库 Windows
超详细步骤解析:从零开始,手把手教你使用 Visual Studio 打造你的第一个 Windows Forms 应用程序,菜鸟也能轻松上手的编程入门指南来了!
【8月更文挑战第31天】创建你的第一个Windows Forms (WinForms) 应用程序是一个激动人心的过程,尤其适合编程新手。本指南将带你逐步完成一个简单WinForms 应用的开发。首先,在Visual Studio 中创建一个“Windows Forms App (.NET)”项目,命名为“我的第一个WinForms 应用”。接着,在空白窗体中添加一个按钮和一个标签控件,并设置按钮文本为“点击我”。然后,为按钮添加点击事件处理程序`button1_Click`,实现点击按钮后更新标签文本为“你好,你刚刚点击了按钮!”。
389 0
|
3月前
|
关系型数据库 MySQL 分布式数据库
零基础教你用云数据库PolarDB搭建企业网站,完成就送桌面收纳桶!
零基础教你用云数据库PolarDB搭建企业网站,完成就送桌面收纳桶,邀请好友完成更有机会获得​小米Watch S3、小米体重称​等诸多好礼!
零基础教你用云数据库PolarDB搭建企业网站,完成就送桌面收纳桶!

相关产品

  • 云原生分布式数据库 PolarDB-X
  • 云原生数据库 PolarDB