PaddlePaddle:在Serverless架构上十几行代码实现OCR能力

本文涉及的产品
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
函数计算FC,每月15万CU 3个月
简介: 飞桨(PaddlePaddle)以百度多年的深度学习技术研究和业务应用为基础,是中国首个自主研发、功能完备、 开源开放的产业级深度学习平台,集深度学习核心训练和推理框架、基础模型库、端到端开发套件和丰富的工具组件于一体。飞桨深度学习框架采用基于编程逻辑的组网范式,对于普通开发者而言更容易上手,同时支持声明式和命令式编程,兼具开发的灵活性和高性能。另外飞桨不仅广泛兼容第三方开源框架训练的模型部署,并且为不同的场景的生产环境提供了完备的推理引擎,包括适用于高性能服务器及云端推理的原生推理库 Paddle Inference,面向分布式、流水线生产环境下自动上云、A/B测试等高阶功能的服务化推理

飞桨(PaddlePaddle)以百度多年的深度学习技术研究和业务应用为基础,是中国首个自主研发、功能完备、 开源开放的产业级深度学习平台,集深度学习核心训练和推理框架、基础模型库、端到端开发套件和丰富的工具组件于一体。

飞桨深度学习框架采用基于编程逻辑的组网范式,对于普通开发者而言更容易上手,同时支持声明式和命令式编程,兼具开发的灵活性和高性能。另外飞桨不仅广泛兼容第三方开源框架训练的模型部署,并且为不同的场景的生产环境提供了完备的推理引擎,包括适用于高性能服务器及云端推理的原生推理库 Paddle Inference,面向分布式、流水线生产环境下自动上云、A/B测试等高阶功能的服务化推理框架 Paddle Serving,针对于移动端、物联网场景的轻量化推理引擎 Paddle Lite,以及在浏览器、小程序等环境下使用的前端推理引擎 Paddle.js。同时,透过与不同场景下的主流硬件高度适配优化及异构计算的支持, 飞桨的推理性能也领先绝大部分的主流实现。

安装飞桨

飞桨可以被认为是一个Python的依赖库,官方提供了pip,conda,源码编译等多种安装方法。以pip安装方法为例,飞桨提供了CPU和GPU两个版本安装方法:

  • CPU版本安装方法:

    pip install paddlepaddle
  • GPU版本安装方法:

    pip install paddlepaddle-gpu

实践:手写数字识别任务

MNIST是非常有名的手写体数字识别数据集,在无论是Tensorflow的官方网站还是PaddlePaddle的新手入门,都是通过它做实战讲解,它由手写体数字的图片和相对应的标签组成,如:

MNIST数据集分为训练图像和测试图像。训练图像60000张,测试图像10000张,每一个图片代表0-9中的一个数字,且图片大小均为28*28的矩阵。这一小节将会以PaddlePaddle官方提供的MNIST手写数字识别任务为例,进行PaddlePaddle框架的基本学习。与其他深度学习任务一样,飞桨同样要通过以下四个步骤完成一个相对完整的深度学习任务:

  1. 数据集的准备和加载;
  2. 模型构建;
  3. 模型训练;
  4. 模型评估。

加载内置数据集

飞桨框架内置了一些常见的数据集,在这个示例中,开发者可以加载飞桨框架的内置数据集,例如本案例所涉及到的手写数字体数据集。这里加载两个数据集,一个用来训练模型,一个用来评估模型。

import paddle.vision.transforms as T
transform = T.Normalize(mean=[127.5], std=[127.5], data_format='CHW')

# 下载数据集
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
val_dataset =  paddle.vision.datasets.MNIST(mode='test', transform=transform)

模型搭建

通过 Sequential 将一层一层的网络结构组建起来。注意,需要先对数据进行 Flatten 操作,将[1, 28, 28]形状的图片数据改变形状为[1, 784]。

mnist = paddle.nn.Sequential(
    paddle.nn.Flatten(),
    paddle.nn.Linear(784, 512),
    paddle.nn.ReLU(),
    paddle.nn.Dropout(0.2),
    paddle.nn.Linear(512, 10)
)

模型训练

在训练模型前,需要配置训练模型时损失的计算方法与优化方法,开发者可以使用飞桨框架提供的 prepare 完成,之后使用 fit 接口来开始训练模型。

# 预计模型结构生成模型对象,便于进行后续的配置、训练和验证
model = paddle.Model(mnist)

# 模型训练相关配置,准备损失计算方法,优化器和精度计算方法
model.prepare(paddle.optimizer.Adam(parameters=model.parameters()),
                paddle.nn.CrossEntropyLoss(),
                paddle.metric.Accuracy())

# 开始模型训练
model.fit(train_dataset,
            epochs=5,
            batch_size=64,
            verbose=1)

训练结果:

The loss value printed in the log is the current step, and the metric is the average value of previous steps.
Epoch 1/5
step 938/938 [==============================] - loss: 0.1801 - acc: 0.9032 - 8ms/step
Epoch 2/5
step 938/938 [==============================] - loss: 0.0544 - acc: 0.9502 - 8ms/step
Epoch 3/5
step 938/938 [==============================] - loss: 0.0069 - acc: 0.9595 - 7ms/step
Epoch 4/5
step 938/938 [==============================] - loss: 0.0094 - acc: 0.9638 - 7ms/step
Epoch 5/5
step 938/938 [==============================] - loss: 0.1414 - acc: 0.9670 - 8ms/step

模型评估

开发者可以使用预先定义的验证数据集来评估前一步训练得到的模型的精度。

model.evaluate(val_dataset, verbose=0)

结果如下:

{'loss': [2.145765e-06], 'acc': 0.9751}

可以看出,初步训练得到的模型效果在97.5%附近,在逐渐了解飞桨后,开发者可以通过调整其中的训练参数来提升模型的精度。

与Serverless架构结合

PaddlePaddle团队首次开源文字识别模型套件PaddleOCR,目标是打造丰富、领先、实用的文本识别模型/工具库。该模型套件是一个实用的超轻量OCR系统。主要由DB文本检测、检测框矫正和CRNN文本识别三部分组成。该系统从骨干网络选择和调整、预测头部的设计、数据增强、学习率变换策略、正则化参数选择、预训练模型使用以及模型自动裁剪量化8个方面,采用19个有效策略,对各个模块的模型进行效果调优和瘦身,最终得到整体大小为3.5M的超轻量中英文OCR和2.8M的英文数字OCR。

本地开发

根据PaddleOCR的项目案例,采用轻量级Python Web框架Bottle框架进行项目开发:

# index.py
import base64
import bottle
import random
from paddleocr import PaddleOCR

ocr = PaddleOCR(use_gpu=False)


@bottle.route('/ocr', method='POST')
def login():
    filePath = './temp/' + (''.join(random.sample('zyxwvutsrqponmlkjihgfedcba', 5)))
    with open(filePath, 'wb') as f:
        f.write(base64.b64decode(bottle.request.body.read().decode("utf-8").split(',')[1]))
    ocrResult = ocr.ocr(filePath, cls=False)
    return {'result': [[line[1][0], float(line[1][1])] for line in ocrResult]}


bottle.run(host='0.0.0.0', port=8080)

开发完成之后,运行该项目:

python index.py

可以看到服务已经启动:

然后通过Postman工具进行测试,首先准备一张图片(此处以PaddleOCR项目内置的测试图片为例):

通过将图片转换为Base64编码,并以POST方法请求刚刚启动的Web服务,可以看到PaddleOCR的执行结果:

部署到Serverless架构

目前各大云厂商的FaaS平台均已经逐渐支持容器镜像部署。所以,可以将项目打包成镜像,并通过Serverless Devs部署到阿里云函数计算。

部署前准备

首先需要完成Dockerfile文件:

FROM python:3.7-slim

RUN apt update && apt install gcc libglib2.0-dev libgl1-mesa-glx libsm6 libxrender1 -y && pip install paddlepaddle bottle scikit-build paddleocr

# Create app directory
WORKDIR /usr/src/app

# Bundle app source
COPY . .

编写符合Serverless Devs规范的Yaml文档:

# s.yaml
edition: 1.0.0
name: paddle-ocr
access: default

services:
  paddle-ocr:
    component: fc
    props:
      region: cn-shanghai
      service:
        name: paddle-ocr
        description: paddle-ocr service
      function:
        name: paddle-ocr-function
        runtime: custom-container
        caPort: 8080
        codeUri: ./
        timeout: 60
        customContainerConfig:
          image: 'registry.cn-shanghai.aliyuncs.com/custom-container/paddle-ocr:0.0.1'
          command: '["python"]'
          args: '["index.py"]'
      triggers:
        - name: httpTrigger
          type: http
          config:
            authType: anonymous
            methods:
              - GET
              - POST
      customDomains:
        - domainName: auto
          protocol: HTTP
          routeConfigs:
            - path: /*
项目部署

首先构建镜像,此处可以通过Serverless Devs进行构建:

 s build --use-docker

构建完成之后,可以通过工具直接进行部署:

s deploy --push-registry acr-internet --use-local -y

部署完成,可以看到系统返回的测试地址:

项目测试

此时,可以通过该测试地址进行测试,同样得到了预期效果:

项目优化

通过对部署在Serverless架构上的项目进行请求,可以看到冷启动和热启动的时间消耗:

通过冷启动与热启动的对比,我们可以发现,在热启动时,整个系统的性能是相对优秀的。但是遇到冷启动整个项目的响应时常是不可控的,此时可以考虑一下途径进行优化:

  1. 缩减容器镜像的体积,减少不必要的依赖、文件等,清理掉安装依赖时留下的缓存等;因为函数计算的冷启动包括镜像拉取时间;
  2. 部分流程进行优化,例如在PaddleOCR项目中有明确说明:“paddleocr会自动下载ppocr轻量级模型作为默认模型”,所以这就意味着该项目在Serverless架构的冷启动过程中,相对比热启动还增加了一个模型下载和解压的流程,所以这一部分在必要时是可以打入到容器镜像中,进而减少冷启动带来的影响;
  3. 开启镜像加速,可以有效降低容器镜像的冷启动,在阿里云函数计算官方文档中有相关镜像加速的性能测试描述:“开启函数计算的镜像加速后,可提速2~5倍,将分钟级的镜像拉取缩短至秒级”;
  4. 实例预留,最大程度上降低冷启动率。通过实例预留,可以通过多种算法/策略进行实例的预热和预启动,可以最大程度上降低Serverless架构冷启动带来的影响;
相关实践学习
通过ACR快速部署网站应用
本次实验任务是在云上基于ECS部署Docker环境,制作网站镜像并上传至ACR镜像仓库,通过容器镜像运行网站应用,网站运行在Docker容器中、网站业务数据存储在Mariadb数据库中、网站文件数据存储在服务器ECS云盘中,通过公网地址进行访问。
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
目录
相关文章
|
23天前
|
机器学习/深度学习 编解码 文字识别
医疗票据OCR图像预处理:印章干扰过滤方案与代码实现
医疗票据OCR技术能自动提取票据中的关键信息,但在实际应用中面临多重挑战。首先,票据版式多样,不同医院、地区的格式差异大,需借助动态模板匹配技术来应对。其次,图像质量参差不齐,存在褶皱、模糊、倾斜、印章遮挡等问题,常通过超分辨率重建和图像修复算法处理。此外,手写体识别、复杂业务逻辑理解(如医疗术语和费用规则)以及数据安全与隐私合规要求也是技术难点。 为应对这些挑战,快瞳系统采用“OCR基础识别 + NLP语义修正”的混合架构,并结合深度学习模型(如CRNN、Transformer)来提升准确率和泛化能力。该技术能显著提升医保报销、保险理赔等场景的效率,是推动医疗信息数字化管理的重要工具。
|
2月前
|
SQL 前端开发 关系型数据库
如何开发一套研发项目管理系统?(附架构图+流程图+代码参考)
研发项目管理系统助力企业实现需求、缺陷与变更的全流程管理,支持看板可视化、数据化决策与成本优化。系统以MVP模式快速上线,核心功能包括需求看板、缺陷闭环、自动日报及关键指标分析,助力中小企业提升交付效率与协作质量。
|
2月前
|
JSON 文字识别 BI
如何开发车辆管理系统中的加油管理板块(附架构图+流程图+代码参考)
本文针对中小企业在车辆加油管理中常见的单据混乱、油卡管理困难、对账困难等问题,提出了一套完整的系统化解决方案。内容涵盖车辆管理系统(VMS)的核心功能、加油管理模块的设计要点、数据库模型、系统架构、关键业务流程、API设计与实现示例、前端展示参考(React + Antd)、开发技巧与工程化建议等。通过构建加油管理系统,企业可实现燃油费用的透明化、自动化对账、异常检测与数据分析,从而降低运营成本、提升管理效率。适合希望通过技术手段优化车辆管理的企业技术人员与管理者参考。
|
2月前
|
消息中间件 缓存 JavaScript
如何开发ERP(离散制造-MTO)系统中的生产管理板块(附架构图+流程图+代码参考)
本文详解离散制造MTO模式下的ERP生产管理模块,涵盖核心问题、系统架构、关键流程、开发技巧及数据库设计,助力企业打通计划与执行“最后一公里”,提升交付率、降低库存与浪费。
|
1月前
|
前端开发 JavaScript BI
如何开发车辆管理系统中的车务管理板块(附架构图+流程图+代码参考)
本文介绍了中小企业如何通过车务管理模块提升车辆管理效率。许多企业在管理车辆时仍依赖人工流程,导致违章处理延误、年检过期、维修费用虚高等问题频发。将这些流程数字化,可显著降低合规风险、提升维修追溯性、优化调度与资产利用率。文章详细介绍了车务管理模块的功能清单、数据模型、系统架构、API与前端设计、开发技巧与落地建议,以及实现效果与验收标准。同时提供了数据库建表SQL、后端Node.js/TypeScript代码示例与前端React表单设计参考,帮助企业快速搭建并上线系统,实现合规与成本控制的双重优化。
|
2月前
|
消息中间件 JavaScript 前端开发
如何开发ERP(离散制造-MTO)系统中的技术管理板块(附架构图+流程图+代码参考)
本文详解ERP(离散制造-MTO)系统中的技术管理板块,涵盖产品定义、BOM、工序、工艺文件及变更控制的结构化与系统化管理。内容包括技术管理的核心目标、总体架构、关键组件、业务流程、开发技巧与最佳实践,并提供完整的参考代码,助力企业将技术数据转化为可执行的生产指令,提升制造效率与质量。
|
2月前
|
消息中间件 JavaScript 关系型数据库
如何开发一套ERP(离散制造-MTO)系统(附架构图+流程图+代码参考)
本文介绍了面向离散制造-MTO(按订单生产)模式的ERP系统设计与实现方法。内容涵盖ERP系统定义、总体架构设计、主要功能模块解析、关键业务流程(订单到交付、BOM展开、MRP逻辑、排产等)、开发技巧(DDD、微服务、事件驱动)、参考代码示例、部署上线注意事项及实施效果评估。旨在帮助企业与开发团队构建高效、灵活、可扩展的ERP系统,提升订单交付能力与客户满意度。
|
2月前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
490 7
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
2月前
|
监控 供应链 前端开发
如何开发ERP(离散制造-MTO)系统中的财务管理板块(附架构图+流程图+代码参考)
本文详解离散制造MTO企业ERP系统中财务管理模块的搭建,聚焦应收账款与应付账款管理,涵盖核心功能、业务流程、开发技巧及Python代码示例,助力企业实现财务数据准确、实时可控,提升现金流管理能力。
|
2月前
|
供应链 监控 JavaScript
如何开发ERP(离散制造-MTO)系统中的库存管理板块(附架构图+流程图+代码参考)
本文详解MTO模式下ERP库存管理的关键作用,涵盖核心模块、业务流程、开发技巧与代码示例,助力制造企业提升库存周转率、降低缺货风险,实现高效精准的库存管控。

相关产品

  • 函数计算