大数据学习报告

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 大数据

登录Kibana,开启自动创建索引功能
在右侧概览页面Elasticsearch区域中,单击集群管理。
在Elasticsearch实例列表中,单击实例ID。
在左侧导航栏,选择配置与管理 > 可视化控制。
在Kibana区域中,单击修改配置。
开启Kibana私网访问,此变更过程需等待3-5分钟。
返回上级页面,在Kibana区域中,单击公网入口。
复制左侧云产品资源列表下的Elasticsearch登录名和Elasticsearch登录密码,至Kibana登录页面的账号和密码,单击登录。
在登录成功页面,单击Explore on my own。

在左侧导航栏,单击Dev Tools(开发工具),再单击Go to work。
在Console页签下,执行如下命令,开启阿里云ES实例的自动创建索引功能。
PUT _cluster/settings
{
"persistent": {
"action.auto_create_index": "true"
}
}

开启成功后,结果如下。

{
"acknowledged" : true,
"persistent" : {

"action" : {
  "auto_create_index" : "true"
}

},
"transient" : { }
}

使用Metricbeat采集ECS上的系统数据
返回阿里云Elasticsearch管理控制台,单击Beats数据采集 > 创建采集器。

在创建采集器窗口中,单击Metricbeat。

在系统弹出的确定服务授权对话框,单击确认,授权创建服务关联角色。

在采集器配置向导中,输入或选择采集器信息,复制左侧云产品资源列表下的Elasticsearch登录名和Elasticsearch登录密码,至用户名密码。

在metricbeat.yml中末尾添加如下脚本,单击下一步。

metricbeat.modules:

  • module: system
    metricsets:

    • cpu
    • load
    • memory
    • network
    • process
    • process_summary
    • uptime
    • socket_summary
    • core
    • diskio
    • filesystem
    • fsstat

    enabled: true
    period: 10s
    processes: ['.*']
    cpu.metrics: ["percentages"]
    core.metrics: ["percentages"]

选择采集器安装的ECS实例。

启动采集器并查看采集器安装情况,此生效过程需等待3~5分钟。
单击启动。启动成功后,系统弹出启动成功对话框。
单击前往采集中心查看,在采集器管理区域中,查看启动成功的Metricbeat采集器,等待采集器状态变为已生效1/1。
返回Kibana页面,在左侧导航栏,单击Dev Tools(开发工具)。
在Console页签下,执行如下命令,查看索引。
GET _cat/indices?v
索引创建成功后,结果如下。

在左侧导航栏,单击Dashboard,搜索[Metricbeat System] Overview。

单击进入[Metricbeat System] Overview页面,再单击Host Overview,可查看监控仪表板。

使用Filebeat采集ECS上的Nginx服务数据
返回阿里云Elasticsearch管理控制台 > Beats数据采集中心。
在创建采集器区域,将鼠标移至Filebeat上,单击ECS日志。

在采集器配置向导中,输入或选择采集器信息。完成后,单击下一步。
在填写Filebeat文件目录处,填写如下路径:

/var/log/nginx/

在filebeat.yml中更改如下脚本。
在第24行enabled更改为true。

在第28行更改paths:

  • /var/log/nginx/*.log

单击下一步,选择采集器安装的ECS实例。

启动采集器并查看采集器安装情况,此生效过程需等待3~5分钟。
单击启动。启动成功后,系统弹出启动成功对话框。
单击前往采集中心查看,在采集器管理区域中,查看启动成功的Filebeat采集器,等待采集器状态变为已生效1/1。
返回Kibana页面,在左侧导航栏,单击Dev Tools(开发工具)。
在Console页签下,执行如下命令,查看索引。
GET _cat/indices?v
索引创建成功后,结果如下。

在左侧导航栏,单击Discover,点击选择filebeat,可查看采集的数据详情。

如出现数据无法展示,可在右上角选择“Last 24 hours ” 即可查看采集的数据详情。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
SQL 资源调度 数据库
数仓学习---14、大数据技术之DolphinScheduler
数仓学习---14、大数据技术之DolphinScheduler
|
3月前
|
分布式计算 大数据 Java
大数据-87 Spark 集群 案例学习 Spark Scala 案例 手写计算圆周率、计算共同好友
大数据-87 Spark 集群 案例学习 Spark Scala 案例 手写计算圆周率、计算共同好友
77 5
|
3月前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
58 3
|
3月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
77 0
|
SQL NoSQL Java
Redis学习---大数据技术之Redis(NoSQL简介、Redis简介、Redis安装、五大数据类型、相关配置、持久化)
Redis学习---大数据技术之Redis(NoSQL简介、Redis简介、Redis安装、五大数据类型、相关配置、持久化)
|
3月前
|
数据采集 数据可视化 大数据
大数据体系知识学习(三):数据清洗_箱线图的概念以及代码实现
这篇文章介绍了如何使用Python中的matplotlib和numpy库来创建箱线图,以检测和处理数据集中的异常值。
69 1
大数据体系知识学习(三):数据清洗_箱线图的概念以及代码实现
|
3月前
|
存储 SQL 分布式计算
大数据学习
【10月更文挑战第15天】
71 1
|
3月前
|
分布式计算 大数据 Hadoop
大数据学习
【10月更文挑战第2天】大数据学习
139 16
|
3月前
|
分布式计算 大数据 Linux
大数据体系知识学习(二):WordCount案例实现及错误总结
这篇文章介绍了如何使用PySpark进行WordCount操作,包括环境配置、代码实现、运行结果和遇到的错误。作者在运行过程中遇到了Py4JJavaError和JAVA_HOME未设置的问题,并通过导入findspark初始化和设置环境变量解决了这些问题。文章还讨论了groupByKey和reduceByKey的区别。
47 1
|
3月前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
90 1