基于EMR离线数据分析

简介: 基于EMR离线数据分析

一、 登陆集群

本步骤将指导您如何登录EMR集群终端。

1. 登录阿里云

在远程桌面中点击Firefox ESR,会自动弹出分配子账号的登录页面,点击下一步,从左侧复制子用户密码,粘贴(温馨提示:粘贴快捷键为CTRL+V)到输入框

2. 进入EMR管理页面

登录成功后进入阿里云控制台首页,点击左侧菜单,输入关键词“emr”,点击 E-MapReduce 进入管理页面。

image.png


3.选择资源地域

在E-MapReduce控制台页面上方,选择资源所在地域。例如下图中,地域切换为华东2(上海)。

说明:您可以在云产品资源列表中查看到您的E-MapReduce资源所在地域。

image.png


4.选择集群名/ID

在E-MapReduce控制台页面的集群列表区域,单击您的集群名/ID

说明:您可以在云产品资源列表中查看到您的E-MapReduce集群名/ID。

image.png


5.复制IP地址

集群基础信息页面的主机信息区域,复制MASTER的节点的公网ip地址。

image.png



6. 打开远程桌面终端LxShell


7. SSH连接

在终端中输入连接命令ssh root@[ipaddress]。您需要将[ipaddress]替换成第3步中复制公网地址,例如:

ssh root@139.xxx.xxx.230

命令显示结果如下:


输入 yes。

同意继续后将会提示输入登录密码

说明:输入密码的过程中没有回显,请确保键入内容正确。

登录成功后会显示如下信息。

image.png




二、上传数据到HDFS

本步骤将指导您如何将自建数据上传到HDFS。

1.创建HDFS目录

执行如下命令,创建HDFS目录。

说明:在LX终端中,粘贴快捷键为SHIFT+CTRL+V。

hdfs dfs -mkdir -p /data/student


2. 上传文件

上传文件到hadoop文件系统。

a.执行如下命令,创建u.txt文件。

#创建u.txt文件
vim u.txt

b.按 "i" 键进入编辑模式,通过粘贴快捷键(SHIFT+CTRL+V)将下方内容复制到文件中,按"Esc"返回命令模式,输入":wq"保存

说明:第一列表示userid,第二列表示movieid,第三列表示rating,第四列表示unixtime。

196  242  3  881250949
186  302  3  891717742
22  377  1  878887116
244  51  2  880606923
166  346  1  886397596
298  474  4  884182806
115  265  2  881171488
253  465  5  891628467
305  451  3  886324817
6  86  3  883603013
62  257  2  879372434
286  1014  5  879781125
200  222  5  876042340
210  40  3  891035994
224  29  3  888104457
303  785  3  879485318
122  387  5  879270459
194  274  2  879539794
291  1042  4  874834944
234  1184  2  892079237
119  392  4  886176814
167  486  4  892738452
299  144  4  877881320
291  118  2  874833878
308  1  4  887736532
95  546  2  879196566
38  95  5  892430094
102  768  2  883748450
63  277  4  875747401
160  234  5  876861185
50  246  3  877052329
301  98  4  882075827
225  193  4  879539727
290  88  4  880731963
97  194  3  884238860
157  274  4  886890835
181  1081  1  878962623
278  603  5  891295330
276  796  1  874791932
7  32  4  891350932
10  16  4  877888877
284  304  4  885329322
201  979  2  884114233
276  564  3  874791805
287  327  5  875333916
246  201  5  884921594
242  1137  5  879741196
249  241  5  879641194
99  4  5  886519097
178  332  3  882823437
251  100  4  886271884
81  432  2  876535131
260  322  4  890618898
25  181  5  885853415
59  196  5  888205088
72  679  2  880037164
87  384  4  879877127
290  143  5  880474293
42  423  5  881107687
292  515  4  881103977
115  20  3  881171009
20  288  1  879667584
201  219  4  884112673
13  526  3  882141053
246  919  4  884920949
138  26  5  879024232
167  232  1  892738341
60  427  5  883326620
57  304  5  883698581
223  274  4  891550094
189  512  4  893277702
243  15  3  879987440
92  1049  1  890251826
246  416  3  884923047
194  165  4  879546723
241  690  2  887249482
178  248  4  882823954
254  1444  3  886475558
293  5  3  888906576
127  229  5  884364867
225  237  5  879539643
299  229  3  878192429
225  480  5  879540748
276  54  3  874791025
291  144  5  874835091
222  366  4  878183381
267  518  5  878971773
42  403  3  881108684
11  111  4  891903862
95  625  4  888954412
8  338  4  879361873
162  25  4  877635573
87  1016  4  879876194
279  154  5  875296291
145  275  2  885557505
119  1153  5  874781198
62  498  4  879373848
62  382  3  879375537
28  209  4  881961214
135  23  4  879857765
32  294  3  883709863
90  382  5  891383835
286  208  4  877531942
293  685  3  888905170
216  144  4  880234639
166  328  5  886397722

c. 上传文件u.txt到hadoop文件系统。

hdfs dfs -put u.txt /data/student

3. 查看文件

hdfs dfs -ls /data/student

image.png



三、 使用hive创建表

本步骤将指导您如何使用hive创建数据表,并使用hadoop文件系统中的数据加载到hive数据表中。

1. 登录hive数据库

执行如下命令,登录hive数据库。

hive

image.png


2. 创建表

创建user表。

CREATE TABLE emrusers (
   userid INT,
   movieid INT,
   rating INT,
   unixtime STRING ) 
  ROW FORMAT DELIMITED 
  FIELDS TERMINATED BY '\t' 
  ;

image.png


3. 加载数据

执行如下命令,从hadoop文件系统加载数据到hive数据表。

LOAD DATA INPATH '/data/student/u.txt' INTO TABLE emrusers;

image.png




四、对表进行操作

本步骤将指导您如何使用hive对数据表进行查询等操作。

1. 查看前N条数据

查看5行表数据。

select * from emrusers limit 5;

O1CN01QaSMHt1VXhOqJbs5o_!!6000000002663-2-tps-575-191.png


2. 查询数据量

查询数据表中有多少条数据。

select count(*) from emrusers;

返回结果如下,您可以看到您数据表中一共有多少数据,

56e12075ef244650b8b71d4e34a123e8.png

3. 查询TOP n

查询数据表中评级最高的三个电影。

select movieid,sum(rating) as rat from emrusers group by movieid order by rat desc limit 3;

返回结果如下,您可以看到您数据表中评级最高的三个电影。

9d3fca09e39948db90b710a3bc667527.png

目录
相关文章
|
6月前
|
存储 数据挖掘 OLAP
阿里云 EMR Serverless StarRocks OLAP 数据分析场景解析
阿里云 E-MapReduce Serverless StarRocks 版是阿里云提供的 Serverless StarRocks 全托管服务,提供高性能、全场景、极速统一的数据分析体验,具备开箱即用、弹性扩展、监控管理、慢 SQL 诊断分析等全生命周期能力。内核 100% 兼容 StarRocks,性能比传统 OLAP 引擎提升 3-5 倍,助力企业高效构建大数据应用。本篇文章对阿里云EMR Serverless StarRocks OLAP 数据分析场景进行解析、存算分离架构升级以及 Trino 兼容,无缝替换介绍。
19230 12
|
6月前
|
运维 数据挖掘 Serverless
深度解析阿里云EMR Serverless StarRocks在OLAP数据分析中的应用场景
阿里云EMR Serverless StarRocks作为一款高性能、全场景覆盖、全托管免运维的OLAP分析引擎,在企业数据分析领域展现出了强大的竞争力和广泛的应用前景。通过其卓越的技术特点、丰富的应用场景以及完善的生态体系支持,EMR Serverless StarRocks正逐步成为企业数字化转型和智能化升级的重要推手。未来随着技术的不断进步和应用场景的不断拓展我们有理由相信EMR Serverless StarRocks将在更多领域发挥重要作用为企业创造更大的价值。
|
7月前
|
存储 机器学习/深度学习 缓存
如何使用PySpark进行离线数据分析?
【6月更文挑战第15天】如何使用PySpark进行离线数据分析?
97 10
|
8月前
|
SQL 数据可视化 数据挖掘
EMR Notebook 开启公测,提供交互式数据分析平台
EMR Notebook 是一个 Serverless 化的交互式数据分析和探索平台,满足大数据和 AI 融合下的数据处理需求,现已开启免费公测,欢迎体验!
385 4
|
分布式计算 数据可视化 数据挖掘
06 离线数据分析流程介绍
06 离线数据分析流程介绍
103 0
|
SQL Cloud Native 数据挖掘
BMR实践--基于EMR离线数据分析
今天我们使用云原生BMR集群, 来完成一个demo,电影排名分析。
303 0
BMR实践--基于EMR离线数据分析
|
SQL 分布式计算 Cloud Native
在阿里云中实现EMR离线数据分析
E-MapReduce(简称“EMR”)是云原生开源大数据平台,向客户提供简单易集成的Hadoop、Hive、Spark、Flink、Presto、Clickhouse、Delta、Hudi等开源大数据计算和存储引擎。EMR计算资源可以根据业务的需要调整。EMR可以部署在阿里云公有云的ECS和ACK、专有云平台。产品文档地址:https://www.aliyun.com/product/emapreduce
463 0
在阿里云中实现EMR离线数据分析
|
数据挖掘 数据安全/隐私保护
基于EMR离线数据分析-笔记
基于EMR离线数据分析
140 0
基于EMR离线数据分析-笔记
|
SQL 分布式计算 运维
|
5月前
|
分布式计算 大数据 MaxCompute
EMR Remote Shuffle Service实践问题之阿里云RSS的开源计划内容如何解决
EMR Remote Shuffle Service实践问题之阿里云RSS的开源计划内容如何解决