牛逼!Python常用数据类型的基本操作(长文系列第①篇)(三)

简介: 长文预警!Python基础系列会将基础内容大致分为三到五个板块,每篇文章着重讲一方面,知识不会很难,主要是以小例子的形式解读,如果你已经入门Python,希望可以帮你温习一下;如果你想入门Python,希望可以帮你越过这个门槛。 Python原生数据类型主要有Number、String、Byte、Boolean、None、List、Tuple、Set、Dict这九种,这篇文章主要讲一下字符串、列表、元祖、集合、字典这五种,剩下的四种大家可以自己了解一下。

元组

元组和列表是非常相似的,有一种类似近亲的关系,也就是说列表中很多操作同样适用于元组,比如索引、切片等等,但也有一部分不同,这里主要来说一下元组的特别之处。

首先元组又被称作带锁的列表,就是元组内的元素是不能随意更改的,比如你不能给元组中的一个元素随意赋值。

In [2]: tuple1 = (1,2,3)
In [3]: tuple1[2] = 4
#会发生报错,告诉你不支持这样的操作
TypeError: 'tuple' object does not support item assignment

元组的标志并不是单纯的小括号,而是逗号,或者小括号与逗号的结合,看下面这个例子。

In [31]: tuple2 = (1)
In [32]: type(tuple2)
Out[32]: int
In [33]: tuple3 = (1,)
In [34]: type(tuple3)
Out[34]: tuple
In [35]: tuple4 = 1,2,
In [36]: type(tuple4)
Out[36]: tuple

那如何初始化一个空元组呢?

In [39]: tuple5 = ()
In [40]: type(tuple5)
Out[40]: tuple

上面刚刚说过元组是不可变对象,自然也不会有append、insert、pop这类的操作。元组中增添可以利用"+"实现,删除则可以利用del,因为这是python自带的回收机制。

In [42]: tuple5 = tuple5[:] + (1,2,3,4,)
In [43]: tuple5
Out[47]: (1, 2, 3, 4)
In [50]: del tuple5 #不支持切片
In [51]: tuple5
NameError: name 'tuple5' is not defined

"*"在数值型之间为乘积运算符,而在列表和元组之间可以表示为重复运算符。

In [53]: tuple5 = (1,2)
In [54]: tuple5 * 3
Out[54]: (1, 2, 1, 2, 1, 2)

集合

集合是一个无序不重复元素的集。基本功能包括关系测试和消除重复元素。集合对象还支持联合、交、差和对称差集等数学运算。

首先可以利用大括号或set()函数创建集合,如果想要创建空集合,你必须使用set()而不是{},{}用来创建字典。

In [57]: set1 = set()
In [58]: type(set1)
Out[58]: set

集合会本身会带有去重功能。

In [55]: set1 = {1,1,2,2,3,3,4}
In [56]: set1
Out[56]: {1, 2, 3, 4}

将集合转化为列表时,会自动排序。

In [74]: set2 = {5,5,4,2,2,0}
In [75]: list_ = list(set2)
In [76]: list_
Out[76]: [0, 2, 4, 5]

集合之间的一些运算操作。

In [60]: set1 = {1,2,3,4}
In [61]: set2 = {3,4,5}
#差
In [62]: set1 - set2
Out[62]: {1, 2}
#并
In [63]: set1 | set2
Out[63]: {1, 2, 3, 4, 5}
#交
In [64]: set1 & set2
Out[64]: {3, 4}
#只在set1或只在set2中
In [65]: set1 ^ set2
Out[65]: {1, 2, 5}

利用add向集合中增添元素,利用remove删除元素。

In [69]: set1 = {1,2,3}
In [70]: set1.add(5)
In [71]: set1
Out[71]: {1, 2, 3, 5}
In [72]: set1.remove(2)
In [73]: set1
Out[73]: {1, 3, 5}
相关文章
|
2月前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
305 10
|
6天前
|
数据采集 数据安全/隐私保护 Python
从零开始:用Python爬取网站的汽车品牌和价格数据
在现代化办公室中,工程师小李和产品经理小张讨论如何获取懂车帝网站的汽车品牌和价格数据。小李提出使用Python编写爬虫,并通过亿牛云爬虫代理避免被封禁。代码实现包括设置代理、请求头、解析网页内容、多线程爬取等步骤,确保高效且稳定地抓取数据。小张表示理解并准备按照指导操作。
从零开始:用Python爬取网站的汽车品牌和价格数据
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
1月前
|
数据采集 Web App开发 数据可视化
Python用代理IP获取抖音电商达人主播数据
在当今数字化时代,电商直播成为重要的销售模式,抖音电商汇聚了众多达人主播。了解这些主播的数据对于品牌和商家至关重要。然而,直接从平台获取数据并非易事。本文介绍如何使用Python和代理IP高效抓取抖音电商达人主播的关键数据,包括主播昵称、ID、直播间链接、观看人数、点赞数和商品列表等。通过环境准备、代码实战及数据处理与可视化,最终实现定时任务自动化抓取,为企业决策提供有力支持。
|
2月前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
2月前
|
Python
Python 中一些常见的数据类型
Python 中一些常见的数据类型
180 8
|
2月前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
2月前
|
数据采集 存储 XML
python实战——使用代理IP批量获取手机类电商数据
本文介绍了如何使用代理IP批量获取华为荣耀Magic7 Pro手机在电商网站的商品数据,包括名称、价格、销量和用户评价等。通过Python实现自动化采集,并存储到本地文件中。使用青果网络的代理IP服务,可以提高数据采集的安全性和效率,确保数据的多样性和准确性。文中详细描述了准备工作、API鉴权、代理授权及获取接口的过程,并提供了代码示例,帮助读者快速上手。手机数据来源为京东(item.jd.com),代理IP资源来自青果网络(qg.net)。
|
3月前
|
Python
Python中不同数据类型之间如何进行转换?
Python中不同数据类型之间如何进行转换?
41 6
|
3月前
|
存储 开发者 Python
Python 的数据类型
Python 的数据类型
58 6

热门文章

最新文章

推荐镜像

更多