面试必会之HashMap源码分析(下)

简介: 面试必会之HashMap源码分析(下)
loadFactor 负载因子


对于 HashMap 来说,负载因子是一个很重要的参数,该参数反应了 HashMap 桶数组的使用情况。通过调节负载因子,可使 HashMap 时间和空间复杂度上有不同的表现。


当我们调低负载因子时,HashMap 所能容纳的键值对数量变少。扩容时,重新将键值对存储新的桶数组里,键的键之间产生的碰撞会下降,链表长度变短。此时,HashMap 的增删改查等操作的效率将会变高,这里是典型的拿空间换时间。


相反,如果增加负载因子(负载因子可以大于1),HashMap 所能容纳的键值对数量变多,空间利用率高,但碰撞率也高。这意味着链表长度变长,效率也随之降低,这种情况是拿时间换空间。至于负载因子怎么调节,这个看使用场景了。


一般情况下,我们用默认值就可以了。大多数情况下0.75在时间跟空间代价上达到了平衡所以不建议修改。


查找


public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}
// 获取hash值
static final int hash(Object key) {
    int h;
    // 拿到key的hash值后与其五符号右移16位取与
    // 通过这种方式,让高位数据与低位数据进行异或,以此加大低位信息的随机性,变相的让高位数据参与到计算中。
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; 
    Node<K,V> first, e; 
    int n; K k;
    // 定位键值对所在桶的位置
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        // 判断桶中第一项(数组元素)相等
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        // 桶中不止一个结点
        if ((e = first.next) != null) {
            // 是否是红黑树,是的话调用getTreeNode方法
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            // 不是红黑树的话,在链表中遍历查找    
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}


注意:


  1. HashMap的hash算法(hash()方法)。


  1. (n - 1) &amp; hash等价于对 length 取余。


添加


public V put(K key, V value) {
    // 调用hash(key)方法来计算hash 
    return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; 
    Node<K,V> p; 
    int n, i;
    // 容量初始化:当table为空,则调用resize()方法来初始化容器
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    //确定元素存放在哪个桶中,桶为空,新生成结点放入桶中
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
        Node<K,V> e; K k;
        // 比较桶中第一个元素(数组中的结点)的hash值相等,key相等
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            //如果键的值以及节点 hash 等于链表中的第一个键值对节点时,则将 e 指向该键值对
            e = p;
        // 如果桶中的引用类型为 TreeNode,则调用红黑树的插入方法
        else if (p instanceof TreeNode)
            // 放入树中
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            //对链表进行遍历,并统计链表长度
            for (int binCount = 0; ; ++binCount) {
                // 到达链表的尾部
                if ((e = p.next) == null) {
                    //在尾部插入新结点
                    p.next = newNode(hash, key, value, null);
                    // 如果结点数量达到阈值,转化为红黑树
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                // 判断链表中结点的key值与插入的元素的key值是否相等
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        //判断要插入的键值对是否存在 HashMap 中
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            // onlyIfAbsent 表示是否仅在 oldValue 为 null 的情况下更新键值对的值
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    // 键值对数量超过阈值时,则进行扩容
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}


事实上,new HashMap();完成后,如果没有put操作,是不会分配存储空间的。



  1. 当桶数组 table 为空时,通过扩容的方式初始化 table


  1. 查找要插入的键值对是否已经存在,存在的话根据条件判断是否用新值替换旧值


  1. 如果不存在,则将键值对链入链表中,并根据链表长度决定是否将链表转为红黑树


  1. 判断键值对数量是否大于阈值,大于的话则进行扩容操作


扩容机制


在 HashMap 中,桶数组的长度均是2的幂,阈值大小为桶数组长度与负载因子的乘积。当 HashMap 中的键值对数量超过阈值时,进行扩容。


HashMap 按当前桶数组长度的2倍进行扩容,阈值也变为原来的2倍(如果计算过程中,阈值溢出归零,则按阈值公式重新计算)。扩容之后,要重新计算键值对的位置,并把它们移动到合适的位置上去。


final Node<K,V>[] resize() {
    // 拿到数组桶
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    // 如果数组桶的容量大与0
    if (oldCap > 0) {
        // 如果比最大值还大,则赋值为最大值
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        // 如果扩容后小于最大值 而且 旧数组桶大于初始容量16, 阈值左移1(扩大2倍)
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    // 如果数组桶容量<=0 且 旧阈值 >0
    else if (oldThr > 0) // initial capacity was placed in threshold
        // 新容量=旧阈值
        newCap = oldThr;
    // 如果数组桶容量<=0 且 旧阈值 <=0
    else {               // zero initial threshold signifies using defaults
        // 新容量=默认容量
        newCap = DEFAULT_INITIAL_CAPACITY;
        // 新阈值= 负载因子*默认容量
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    // 如果新阈值为0
    if (newThr == 0) {
        // 重新计算阈值
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    // 更新阈值
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
        // 创建新数组
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    // 覆盖数组桶    
    table = newTab;
    // 如果旧数组桶不是空,则遍历桶数组,并将键值对映射到新的桶数组中
    if (oldTab != null) {
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                // 如果是红黑树
                else if (e instanceof TreeNode)
                    // 重新映射时,需要对红黑树进行拆分
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    // 如果不是红黑树,则按链表处理
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    // 遍历链表,并将链表节点按原顺序进行分组
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 将分组后的链表映射到新桶中
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}


整体步骤:


  1. 计算新桶数组的容量 newCap 和新阈值 newThr


  1. 根据计算出的 newCap 创建新的桶数组,桶数组 table 也是在这里进行初始化的


  1. 将键值对节点重新映射到新的桶数组里。如果节点是 TreeNode 类型,则需要拆分红黑树。如果是普通节点,则节点按原顺序进行分组。


总结起来,一共有三种扩容方式


  1. 使用默认构造方法初始化HashMap。从前文可以知道HashMap在一开始初始化的时候会返回一个空的table,并且thershold为0。因此第一次扩容的容量为默认值DEFAULT_INITIAL_CAPACITY也就是16。同时threshold = DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR = 12


  1. 指定初始容量的构造方法初始化HashMap。那么从下面源码可以看到初始容量会等于threshold,接着threshold = 当前的容量(threshold) * DEFAULT_LOAD_FACTOR


  1. HashMap不是第一次扩容。如果HashMap已经扩容过的话,那么每次table的容量以及threshold量为原有的两倍。


细心点的人会很好奇,为什么要判断loadFactor为0呢?


loadFactor小数位为 0,整数位可被2整除且大于等于8时,在某次计算中就可能会导致 newThr 溢出归零。


疑问和进阶


1. JDK1.7是基于数组+单链表实现(为什么不用双链表)


首先,用链表是为了解决hash冲突。


单链表能实现为什么要用双链表呢?(双链表需要更大的存储空间)


2. 为什么要用红黑树,而不用平衡二叉树?


插入效率比平衡二叉树高,查询效率比普通二叉树高。所以选择性能相对折中的红黑树。


3. 重写对象的Equals方法时,要重写hashCode方法,为什么?跟HashMap有什么关系?


equals与hashcode间的关系:


  1. 如果两个对象相同(即用equals比较返回true),那么它们的hashCode值一定要相同;


  1. 如果两个对象的hashCode相同,它们并不一定相同(即用equals比较返回false)


因为在 HashMap 的链表结构中遍历判断的时候,特定情况下重写的 equals 方法比较对象是否相等的业务逻辑比较复杂,循环下来更是影响查找效率。所以这里把 hashcode 的判断放在前面,只要 hashcode 不相等就玩儿完,不用再去调用复杂的 equals 了。很多程度地提升 HashMap 的使用效率。


所以重写 hashcode 方法是为了让我们能够正常使用 HashMap 等集合类,因为 HashMap 判断对象是否相等既要比较 hashcode 又要使用 equals 比较。而这样的实现是为了提高 HashMap 的效率。


附上源码图:


image.png


image.png


4. HashMap为什么不直接使用对象的原始hash值呢?


static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}


我们发现,HashMap的哈希值是通过上面的方式获取,而不是通过key.hashCode()方法获取。


原因:


通过移位和异或运算,可以让 hash 变得更复杂,进而影响 hash 的分布性。


5. 既然红黑树那么好,为啥hashmap不直接采用红黑树,而是当大于8个的时候才转换红黑树?


因为红黑树需要进行左旋,右旋操作, 而单链表不需要。


以下都是单链表与红黑树结构对比。


如果元素小于8个,查询成本高,新增成本低。


如果元素大于8个,查询成本低,新增成本高。


至于为什么选数字8,是大佬折中衡量的结果-.-,就像loadFactor默认值0.75一样。


相关文章
|
24天前
|
存储 Java 程序员
Java面试加分点!一文读懂HashMap底层实现与扩容机制
本文详细解析了Java中经典的HashMap数据结构,包括其底层实现、扩容机制、put和查找过程、哈希函数以及JDK 1.7与1.8的差异。通过数组、链表和红黑树的组合,HashMap实现了高效的键值对存储与检索。文章还介绍了HashMap在不同版本中的优化,帮助读者更好地理解和应用这一重要工具。
51 5
|
1月前
|
Java
Java基础之 JDK8 HashMap 源码分析(中间写出与JDK7的区别)
这篇文章详细分析了Java中HashMap的源码,包括JDK8与JDK7的区别、构造函数、put和get方法的实现,以及位运算法的应用,并讨论了JDK8中的优化,如链表转红黑树的阈值和扩容机制。
23 1
|
1月前
|
存储 算法 安全
HashMap常见面试题(超全面):实现原理、扩容机制、链表何时升级为红黑树、死循环
HashMap常见面试题:红黑树、散列表,HashMap实现原理、扩容机制,HashMap的jd1.7与jdk1.8有什么区别,寻址算法、链表何时升级为红黑树、死循环
|
3月前
|
安全 Java
【Java集合类面试十五】、说一说HashMap和HashTable的区别
HashMap和Hashtable的主要区别在于Hashtable是线程安全的,不允许null键和值,而HashMap是非线程安全的,允许null键和值。
|
3月前
|
安全 Java
【Java集合类面试十三】、HashMap如何实现线程安全?
实现HashMap线程安全的方法包括使用Hashtable类、ConcurrentHashMap,或通过Collections工具类将HashMap包装成线程安全的Map。
|
3月前
|
Java
【Java集合类面试十一】、HashMap为什么用红黑树而不用B树?
HashMap选择使用红黑树而非B树,是因为红黑树在内存中实现简单,节点更小,占用内存少,且在插入、删除和查找操作上提供更好的平衡性能。
|
3月前
|
安全 Java
【Java集合类面试十六】、HashMap与ConcurrentHashMap有什么区别?
HashMap是非线程安全的,而ConcurrentHashMap通过减少锁粒度来提高并发性能,检索操作无需锁,从而提供更好的线程安全性和性能。
|
3月前
|
Java
【Java集合类面试十四】、HashMap是如何解决哈希冲突的?
HashMap解决哈希冲突的方法是通过链表和红黑树:当链表长度超过一定阈值时,转换为红黑树以提高性能;当链表长度缩小到另一个阈值时,再转换回链表。
|
3月前
|
Java
【Java集合类面试十二】、HashMap为什么线程不安全?
HashMap在并发环境下执行put操作可能导致循环链表的形成,进而引起死循环,因而它是线程不安全的。
|
3月前
|
存储 Java
【Java集合类面试十】、HashMap中的循环链表是如何产生的?
在多线程环境下,HashMap在扩容时如果发生条件竞争,元素的插入顺序可能形成循环链表,导致死循环。