实现人脸截图保存并编写128维特征向量

简介: ## 前情提要通过[上一篇](https://developer.aliyun.com/article/868130?spm=a2c6h.26396819.0.0.6e513e18zineFN)我们就可以对图片中的人脸进行识别,这篇文章就来教大家怎么对人脸部分进行截取保存。并且将图片中的每张人脸编码成一个128维长度的向量,通过这个后续能在人脸之间进行比对。

前情提要

通过上一篇我们就可以对图片中的人脸进行识别,这篇文章就来教大家怎么对人脸部分进行截取保存。并且将图片中的每张人脸编码成一个128维长度的向量,通过这个后续能在人脸之间进行比对。

PIL导入

由于我们需要进行切割和保存所有我这里使用了PIL库进行,Python图像库PIL(Python Image Library)是python的第三方图像处理库,但是由于其强大的功能与众多的使用人数,几乎已经被认为是python官方图像处理库了。其官方主页为:PIL。 PIL历史悠久,原来是只支持python2.x的版本的,后来出现了移植到python3的库pillow,pillow号称是friendly fork for PIL,其功能和PIL差不多,但是支持python3。conda环境中只需activate "你所使用的环境" 然后 conda install pillow 即可,python默认环境中只需pip install pillow ,或是都可通过pycharm搜索pillow进行下载

人脸编码函数——face_encodings

face_encodings( face_image , known_face_locations=None , num_jitters=1 ) 给定一个图像,返回图像中每个人脸的128脸部编码(特征向量)。 参数: face_image : 输入的人脸图像 known_face_locations : 可选参数,如果你知道每个人脸所在的边界框 num_jitters=1 : 在计算编码时要重新采样的次数。越高越准确,但速度越慢(100就会慢100倍)
返回值: 一个128维的脸部编码列表,返回值类型为:List[Dict[str,List[Tuple[Any,Any]]]],是由各个脸部特征关键点位置组成的字典记录 列表,一个Dict对象对应图片中的一个人脸,其key为某个脸部特征: 如输出中的nose_bridge、left_eye等,value是由该脸部特征各个关键点位置组成的List,关键点位置是一个Tuple。

切割

而我们想要对人脸部分实现截图保存只需要通过上篇文章中face_locations函数定位到人脸部分时进行切割即可我用到的是Image.crop()方法进行切割。具体代码如下(有详细解释,嘿嘿)

具体代码

Main

import face_recognition
from PIL import Image
import Test3                  # 导入Test3

'''
图片中人脸截图保存
'''
img = Image.open("2.png")
image = face_recognition.load_image_file("2.png")
face_locations = face_recognition.face_locations(image)  # 参数(top, right, bottom, left) 上右角 下左角
for i in range(len(face_locations)):
    top, right, bottom, left = face_locations[i]
    region = img.crop((left, top, right, bottom))  # 参数(left, upper, right, lower)  左上角  右下角 进行切割
    region.save(str(i)+"_.jpg") # 保存 
    region.show()     # 展示
    Test3.demoFunc("2.png")   #  调用Test3中的demoFunc()方法

Test3

import face_recognition

def demoFunc(path):
  '''
    将图片中的每张人脸编码成一个128维长度的向量
    '''
    image = face_recognition.load_image_file(path)
    face_encodings = face_recognition.face_encodings(image)  #将单个人脸数据转化为一个128维的向量
    for i in face_encodings:
        print("i:", i)

结果展示

又到了激动人心的展示时刻了
128维向量
嘿嘿大头照

总结

人脸识别第二期结束,如果大家觉得还不错有所帮助的话可以点点小赞哈哈,大家一起努力进步!

目录
相关文章
|
Ubuntu 定位技术 API
python 通过图片(原图)精确获取图片拍摄的位置,时间,设备等信息
python 通过图片(原图)精确获取图片拍摄的位置,时间,设备等信息
python 通过图片(原图)精确获取图片拍摄的位置,时间,设备等信息
|
2月前
|
计算机视觉 Python
Python实用记录(一):如何将不同类型视频按关键帧提取并保存图片,实现图片裁剪功能
这篇文章介绍了如何使用Python和OpenCV库从不同格式的视频文件中按关键帧提取图片,并展示了图片裁剪的方法。
90 0
|
6月前
|
存储 Python
python实现图片与视频转换:将视频保存为图片,将批量图片保存为视频
python实现图片与视频转换:将视频保存为图片,将批量图片保存为视频
|
2月前
|
JSON 数据格式 计算机视觉
Opencv实用笔记(一): 获取并绘制JSON标注文件目标区域(可单独保存目标小图)
本文介绍了如何使用OpenCV和Python根据JSON标注文件获取并绘制目标区域,同时可将裁剪的图像单独保存。通过示例代码,展示了如何读取图片路径、解析JSON标注、绘制标注框并保存裁剪图像的过程。此外,还提供了相关的博客链接,供读者进一步学习。
54 0
|
2月前
|
Python
Python实现图片的拼接
Python实现图片的拼接
20 0
|
5月前
|
存储 编解码 算法
LabVIEW如何实现多张图拼接
LabVIEW如何实现多张图拼接
86 0
|
7月前
|
开发工具 数据安全/隐私保护 Android开发
视觉智能平台常见问题之图片解析出的水印图判断是自己添加的水印图如何解决
视觉智能平台是利用机器学习和图像处理技术,提供图像识别、视频分析等智能视觉服务的平台;本合集针对该平台在使用中遇到的常见问题进行了收集和解答,以帮助开发者和企业用户在整合和部署视觉智能解决方案时,能够更快地定位问题并找到有效的解决策略。
103 1
|
7月前
|
计算机视觉
OpenCV中读取、显示、保存图像及获取图像属性操作讲解及演示(附源码)
OpenCV中读取、显示、保存图像及获取图像属性操作讲解及演示(附源码)
390 0
|
机器学习/深度学习 PyTorch 算法框架/工具
使用PyTorch构建卷积GAN源码(详细步骤讲解+注释版) 02人脸图片生成 上
使用PyTorch构建卷积GAN源码(详细步骤讲解+注释版) 02人脸图片生成 上
|
机器学习/深度学习 PyTorch 算法框架/工具
使用PyTorch构建卷积GAN源码(详细步骤讲解+注释版) 02人脸图片生成下
生成器的结构应与鉴别器相逆,因此生成器不再使用卷积操作,而是使用卷积的逆向操作,我们称之为转置卷积(transposed convolution)。