实现人脸截图保存并编写128维特征向量

简介: ## 前情提要通过[上一篇](https://developer.aliyun.com/article/868130?spm=a2c6h.26396819.0.0.6e513e18zineFN)我们就可以对图片中的人脸进行识别,这篇文章就来教大家怎么对人脸部分进行截取保存。并且将图片中的每张人脸编码成一个128维长度的向量,通过这个后续能在人脸之间进行比对。

前情提要

通过上一篇我们就可以对图片中的人脸进行识别,这篇文章就来教大家怎么对人脸部分进行截取保存。并且将图片中的每张人脸编码成一个128维长度的向量,通过这个后续能在人脸之间进行比对。

PIL导入

由于我们需要进行切割和保存所有我这里使用了PIL库进行,Python图像库PIL(Python Image Library)是python的第三方图像处理库,但是由于其强大的功能与众多的使用人数,几乎已经被认为是python官方图像处理库了。其官方主页为:PIL。 PIL历史悠久,原来是只支持python2.x的版本的,后来出现了移植到python3的库pillow,pillow号称是friendly fork for PIL,其功能和PIL差不多,但是支持python3。conda环境中只需activate "你所使用的环境" 然后 conda install pillow 即可,python默认环境中只需pip install pillow ,或是都可通过pycharm搜索pillow进行下载

人脸编码函数——face_encodings

face_encodings( face_image , known_face_locations=None , num_jitters=1 ) 给定一个图像,返回图像中每个人脸的128脸部编码(特征向量)。 参数: face_image : 输入的人脸图像 known_face_locations : 可选参数,如果你知道每个人脸所在的边界框 num_jitters=1 : 在计算编码时要重新采样的次数。越高越准确,但速度越慢(100就会慢100倍)
返回值: 一个128维的脸部编码列表,返回值类型为:List[Dict[str,List[Tuple[Any,Any]]]],是由各个脸部特征关键点位置组成的字典记录 列表,一个Dict对象对应图片中的一个人脸,其key为某个脸部特征: 如输出中的nose_bridge、left_eye等,value是由该脸部特征各个关键点位置组成的List,关键点位置是一个Tuple。

切割

而我们想要对人脸部分实现截图保存只需要通过上篇文章中face_locations函数定位到人脸部分时进行切割即可我用到的是Image.crop()方法进行切割。具体代码如下(有详细解释,嘿嘿)

具体代码

Main

import face_recognition
from PIL import Image
import Test3                  # 导入Test3

'''
图片中人脸截图保存
'''
img = Image.open("2.png")
image = face_recognition.load_image_file("2.png")
face_locations = face_recognition.face_locations(image)  # 参数(top, right, bottom, left) 上右角 下左角
for i in range(len(face_locations)):
    top, right, bottom, left = face_locations[i]
    region = img.crop((left, top, right, bottom))  # 参数(left, upper, right, lower)  左上角  右下角 进行切割
    region.save(str(i)+"_.jpg") # 保存 
    region.show()     # 展示
    Test3.demoFunc("2.png")   #  调用Test3中的demoFunc()方法

Test3

import face_recognition

def demoFunc(path):
  '''
    将图片中的每张人脸编码成一个128维长度的向量
    '''
    image = face_recognition.load_image_file(path)
    face_encodings = face_recognition.face_encodings(image)  #将单个人脸数据转化为一个128维的向量
    for i in face_encodings:
        print("i:", i)

结果展示

又到了激动人心的展示时刻了
128维向量
嘿嘿大头照

总结

人脸识别第二期结束,如果大家觉得还不错有所帮助的话可以点点小赞哈哈,大家一起努力进步!

目录
相关文章
|
6月前
|
人工智能 搜索推荐
StableIdentity:可插入图像/视频/3D生成,单张图即可变成超人,可直接与ControlNet配合使用
【2月更文挑战第17天】StableIdentity:可插入图像/视频/3D生成,单张图即可变成超人,可直接与ControlNet配合使用
108 2
StableIdentity:可插入图像/视频/3D生成,单张图即可变成超人,可直接与ControlNet配合使用
|
18天前
|
机器学习/深度学习 JSON 算法
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
本文详细介绍了使用YOLOv5-Seg模型进行图像分割的完整流程,包括图像分割的基础知识、YOLOv5-Seg模型的特点、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。通过实例代码,指导读者从自定义数据集开始,直至模型的测试验证,适合深度学习领域的研究者和开发者参考。
129 2
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
|
5月前
|
存储 Python
python实现图片与视频转换:将视频保存为图片,将批量图片保存为视频
python实现图片与视频转换:将视频保存为图片,将批量图片保存为视频
|
6月前
|
算法 图形学
LabVIEW程序框图保存为图像
LabVIEW程序框图保存为图像
62 1
|
6月前
|
计算机视觉
OpenCV中读取、显示、保存图像及获取图像属性操作讲解及演示(附源码)
OpenCV中读取、显示、保存图像及获取图像属性操作讲解及演示(附源码)
304 0
|
机器学习/深度学习 PyTorch 算法框架/工具
使用PyTorch构建卷积GAN源码(详细步骤讲解+注释版) 02人脸图片生成下
生成器的结构应与鉴别器相逆,因此生成器不再使用卷积操作,而是使用卷积的逆向操作,我们称之为转置卷积(transposed convolution)。
|
机器学习/深度学习 PyTorch 算法框架/工具
使用PyTorch构建卷积GAN源码(详细步骤讲解+注释版) 02人脸图片生成 上
使用PyTorch构建卷积GAN源码(详细步骤讲解+注释版) 02人脸图片生成 上
|
数据可视化
gganimate|创建可视化动图,让你的表会说话
gganimate|创建可视化动图,让你的表会说话
|
机器学习/深度学习 数据采集 编解码
人脸表情识别系统介绍——上篇(python实现,含UI界面及完整代码)
人脸表情识别系统介绍——上篇(python实现,含UI界面及完整代码)
518 0
|
人工智能 JSON 算法
分割抠图功能讲解及演示 | 学习笔记
快速学习分割抠图功能讲解及演示
分割抠图功能讲解及演示 | 学习笔记