详解机器学习的凸优化、图神经网络、强化学习、贝叶斯方法等四大主题

简介: AI是一门入门简单,但想深入却很难的学科,这也是为什么AI高端人才一直非常紧缺的重要原因。在AI领域技术领域,我们可以说机器学习功底决定了一个人的上限也不为过。为什么?机器学习就像物理学中的数学,如果你对数学没有很好地掌握,想深入物理学科是不太可能的。放到AI领域,不管你做NLP方向也好,还是CV方向也好,只要深入下去,都会发现跟机器学习息息相关。在工作中,你是否能够利用1-3天的时间来复现任意顶会的文章?是否能够按照实际的场景灵活提出新的模型,或者提出对现有模型的改造?实际上这些是核心竞争力,同时是走向高端人才必须要经历的门槛。虽然很有挑战,但一旦过了这个门槛你就会发现你是市场中的TO

1. 凸优化部分


凸优化在人工智能领域有着举足轻重的地位,对于模型的训练实际上等同于对模型的优化。我们平时使用的sgd, adam, adagrad, l-bfgs这类算法均属于优化范畴。在AI的应用中,当我们构造了目标函数之后,接下来的工作就是优化部分。那为什么凸优化这么重要呢?设想一下,如果你想设计一个新的模型,或者在原有的模型基础做一些创新,那对于新构造的目标函数,你需要懂得如何去优化,以及用什么样的优化算法才能解出更好的局部最优解。所以,对于想进阶的AI工程师来说,凸优化是必备课,必须要掌握的内容。

课程大纲第一周:凸优化基础学习目标:了解凸优化技术以及应用场景,理解凸优化技术的类别、技术范畴、以及能把凸优化技术跟生活和工作中的问题联系在一起。同时,深入理解线性规划技术,以及它在不同场景中的应用,并能够实现。学习安排- 从优化角度理解机器学习- 凸优化的重要性- 常见的凸优化问题- 线性规划以及Simplex Method- Stochastic LP- P,NP,NPC问题- 案例分析:运输中的优化问题- 案例分析:打车中的优化问题

- 案例分析:投放运营中的优化问题


第二周:凸优化基础学习目标:学习如何识别凸函数和如果判定凸函数,这里会涉及到三种不同的方法以及多个案例讲解。同时,本周能学到二次规划相关的知识,以及能够用二次规划去模拟的实际问题以及求解方式。 学习安排- 如何判断一个集合是凸集- 各类凸集以及证明- 方法1:Prove by Definition- 方法2:First-order Convexity- 方法3:Second-order Convexity- 二次规划问题以及凸函数证明- 最小二乘问题详解

- 案例分析:WDM距离计算- 案例分析:股票投资组合优化问题


第三周:常见的凸优化问题学习目标:学习如何识别凸函数和如果判定凸函数,这里会涉及到三种不同的方法以及多个案例讲解。同时,本周能学到二次规划相关的知识,以及能够用二次规划去模拟的实际问题以及求解方式。 学习安排- 常见的凸优化问题类别- 半正定规划问题(SDP)- 几何规划问题(GP)- 非凸函数的优化方法- 非凸函数的松弛华- 整数规划以及松弛华- 案例分析:Set Cover问题

- 案例分析:Vertex Cover问题- 案例分析:0-1 Knapsack问题- 案例分析:Cutting-stock问题- 案例分析:Max-cut问题


第四周:优化与量化投资学习目标:作为一个案例章节,主要学习优化在量化投资中的应用,同时也学习常见的量化投资策略。这一章的学习一方面可以带来对新的领域的学习,同时也给其他领域的问题提供思路。  学习安排- 量化投资介绍- 如何阅读K线图- 基于规则的量化策略- 基于机器学习模型的量化策略- 基于LP、QP优化的量化策略- Efficient Frontier, Sharp Ratio- 量化平台介绍


第五周:对偶(Duality)学习目标:掌握对偶相关的知识,对偶可以算是优化领域最为经典的一套方法论。学完本部分之后,可以对已有的模型做改进,同时能够灵活做对偶转换。深入理解对偶领域中的Lower Bound Property,KKT条件,Weak Duality等基本理论。一句话,Duality是优化的精华! 学习安排- 拉格朗日对偶函数- 对偶的几何意义- Lower Bound Property- Weak and Strong Duality- KKT条件- LP、QP、SDP的对偶转换- 对偶的一些应用场景- 经典机器学习模型的对偶转换- 案例分析:SVM的完整对偶转换- 案例分析:不同损失函数的分析


第六周:对偶(Duality)学习目标:掌握对偶相关的知识,对偶可以算是优化领域最为经典的一套方法论。学完本部分之后,可以对已有的模型做改进,同时能够灵活做对偶转换。深入理解对偶领域中的Lower Bound Property,KKT条件,Weak Duality等基本理论。一句话,Duality是优化的精华! 学习安排- Gradient Descent- GD的收敛分析- Subgradient Method- Proximal Gradient Descent- Projected Gradient Descent- Stochastic Gradient Descent- Newton's Method- Quasi-Newton Method- L-BFGS- 案例分析:ADMM的分析

- 案例分析:Adadelta, Adam的比较


第七周:优化技术进阶学习目标:掌握其他主流的优化技术,这些都属于比较进阶的内容,需要前面内容的基础。主要掌握Interior Point Method,ADMM等模型。 学习安排- Mirror Ascent- 分布式梯度下降法- Interior Point Method- ADMM方法- Sparsity与优化关系- Combinatorial优化




目录
相关文章
|
2月前
|
数据采集 机器学习/深度学习 算法
机器学习方法之决策树算法
决策树算法是一种常用的机器学习方法,可以应用于分类和回归任务。通过递归地将数据集划分为更小的子集,从而形成一棵树状的结构模型。每个内部节点代表一个特征的判断,每个分支代表这个特征的某个取值或范围,每个叶节点则表示预测结果。
128 1
|
2天前
|
机器学习/深度学习 自然语言处理 自动驾驶
【机器学习】神经网络的无限可能:从基础到前沿
在当今人工智能的浪潮中,神经网络作为其核心驱动力之一,正以前所未有的速度改变着我们的世界。从图像识别到自然语言处理,从自动驾驶到医疗诊断,神经网络的应用无处不在。本文旨在深入探讨神经网络的各个方面,从基础概念到最新进展,带领读者一窥其背后的奥秘与魅力。
9 3
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
【机器学习】机器学习、深度学习、强化学习和迁移学习简介、相互对比、区别与联系。
机器学习、深度学习、强化学习和迁移学习都是人工智能领域的子领域,它们之间有一定的联系和区别。下面分别对这四个概念进行解析,并给出相互对比、区别与联系以及应用场景案例分析。
6 1
|
13天前
|
机器学习/深度学习 算法 Python
【机器学习】面试问答:决策树如何进行剪枝?剪枝的方法有哪些?
文章讨论了决策树的剪枝技术,包括预剪枝和后剪枝的概念、方法以及各自的优缺点。
27 2
|
13天前
|
机器学习/深度学习
【机器学习】面试题:LSTM长短期记忆网络的理解?LSTM是怎么解决梯度消失的问题的?还有哪些其它的解决梯度消失或梯度爆炸的方法?
长短时记忆网络(LSTM)的基本概念、解决梯度消失问题的机制,以及介绍了包括梯度裁剪、改变激活函数、残差结构和Batch Normalization在内的其他方法来解决梯度消失或梯度爆炸问题。
27 2
|
13天前
|
机器学习/深度学习 算法
【机器学习】简单解释贝叶斯公式和朴素贝叶斯分类?(面试回答)
简要解释了贝叶斯公式及其在朴素贝叶斯分类算法中的应用,包括算法的基本原理和步骤。
22 1
|
13天前
|
机器学习/深度学习
|
16天前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络入门到精通:Python带你搭建AI思维,解锁机器学习的无限可能
【8月更文挑战第3天】踏入人工智能领域,神经网络是开启智慧之门的钥匙。它不仅是一种技术,更是模仿人脑学习与推理的思维方式。从理解神经元间的连接到构建神经网络的基本概念,再到使用Python与TensorFlow搭建手写数字识别模型,每一步都揭示着机器学习的奥秘。随着深入学习,我们将探索更高级的主题,比如深度神经网络、卷积神经网络和循环神经网络,以及如何优化模型性能。掌握背后的数学原理,将帮助我们设计更高效准确的模型。在这个旅程中,Python将是我们的得力助手,引领我们探索AI世界的无限可能。
23 2
|
1月前
|
测试技术
8B尺寸达到GPT-4级性能!北大等提出医疗专家模型训练方法
【7月更文挑战第8天】北京大学等研究者提出的新方法缓解了大模型如Llama-3-8B在持续预训练时的“稳定性差距”,通过多轮次训练、高质量子语料库选择和数据混合策略,提升性能和效率。在医疗领域,他们将OpenLlama-3B性能提升至40.7%,并创建的Llama-3-Physician模型达到GPT-4级别。尽管取得突破,该方法在其他模型和领域的适用性仍需探索,且持续预训练仍资源密集。[链接: https://arxiv.org/abs/2406.14833]
62 25
|
5天前
|
机器学习/深度学习 自然语言处理 算法
基于卷积神经网络(CNN)的垃圾邮件过滤方法
传统的垃圾邮件过滤手段如规则匹配常因垃圾邮件的多变而失效。基于深度学习的方法,特别是卷积神经网络(CNN),能自动学习邮件中的复杂特征,有效识别垃圾邮件的新形态。CNN通过特征学习、处理复杂结构、良好的泛化能力和适应性,以及高效处理大数据的能力,显著提升了过滤精度。在文本分类任务中,CNN通过卷积层提取局部特征,池化层减少维度,全连接层进行分类,特别适合捕捉文本的局部模式和顺序信息,从而构建高效的垃圾邮件过滤系统。
24 0