【Android 逆向】使用 Python 编写 APK 批处理分析工具

简介: 【Android 逆向】使用 Python 编写 APK 批处理分析工具

文章目录

一、涉及到的工具和脚本

二、使用 Python 编写 APK重打包工具






一、涉及到的工具和脚本


apktool.jar : 反编译 APK 文件使用到的工具 ; 参考 【Android 逆向】Android 逆向工具 ( Apktool | IDA | Python ) 一、Apktool 博客章节 ;


aapt.exe : 资源打包工具 ;


ApkTool.py : 这是一个 Python 脚本 , 主要是使用 apktool.jar 和 aapt.exe 工具 , 对 APK 文件进行各种操作 ; 该脚本是 【Android 逆向】APK 文件处理脚本 ApkTool.py ( 脚本简介 | 用法 | 分析 APK 文件 ) 博客中的脚本 ;






二、使用 Python 编写 APK重打包工具


程序结构 : apk 目录是存放所有的 apk 文件的 , 该目录中的文件可以被一次性处理 ;


main.py 是主程序 , ApkTool.py 是通过系统调用调用的脚本 ;


apktool.jar 和 aapt.exe 是 ApkTool.py 脚本用到的工具 ;


image.png


Python 代码如下 :


# coding=utf-8
# 导入系统命令
import os
# 对 APK 文件进行批处理
def batch_apk():
    # 列出 apk 目录下的所有文件
    for f in os.listdir('apk'):
        # 文件名长度超过 4 个字符
        if len(f) > 4:
            # 从后面 4 字节到结尾是 .apk ,
            # 则该文件是 APK 文件 , 对该文件进行解包
            if f[-4:] == '.apk':
                os.system('python ApkTool.py -analyse -inapk apk/' + f)
# 主函数入口
if __name__ == '__main__':
    batch_apk()



执行结果 :


image.png





目录
相关文章
|
1月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
60 4
|
12天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
4天前
|
JavaScript 前端开发 开发者
探索 DrissionPage: 强大的Python网页自动化工具
DrissionPage 是一个基于 Python 的网页自动化工具,结合了浏览器自动化的便利性和 requests 库的高效率。它提供三种页面对象:ChromiumPage、WebPage 和 SessionPage,分别适用于不同的使用场景,帮助开发者高效完成网页自动化任务。
30 4
|
29天前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
14天前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定
|
21天前
|
数据可视化 开发者 Python
Python GUI开发:Tkinter与PyQt的实战应用与对比分析
【10月更文挑战第26天】本文介绍了Python中两种常用的GUI工具包——Tkinter和PyQt。Tkinter内置于Python标准库,适合初学者快速上手,提供基本的GUI组件和方法。PyQt基于Qt库,功能强大且灵活,适用于创建复杂的GUI应用程序。通过实战示例和对比分析,帮助开发者选择合适的工具包以满足项目需求。
69 7
|
1月前
|
数据可视化 算法 Python
基于OpenFOAM和Python的流场动态模态分解:从数据提取到POD-DMD分析
本文介绍了如何利用Python脚本结合动态模态分解(DMD)技术,分析从OpenFOAM模拟中提取的二维切片数据,以深入理解流体动力学现象。通过PyVista库处理VTK格式的模拟数据,进行POD和DMD分析,揭示流场中的主要能量结构及动态特征。此方法为研究复杂流动系统提供了有力工具。
73 2
基于OpenFOAM和Python的流场动态模态分解:从数据提取到POD-DMD分析
|
20天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
28 3
|
21天前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
38 2
|
26天前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
27 2
下一篇
无影云桌面