Meta揭幕全球最快AI超算:目标一天之内训练万亿参数大模型

简介: Meta揭幕全球最快AI超算:目标一天之内训练万亿参数大模型

全是英伟达 DGX A100。到今年年中,它将成为全球速度最快的 AI 超级计算机。


最近一段时间,超级计算机是科技公司比拼的重点。昨天商汤科技的 AIDC 刚刚启用,今天又传来了脸书超算的消息。

当地时间 1 月 24 日,Meta(原 Facebook)揭幕了其研究团队的全新人工智能超级计算机,预计在 2022 年中全部完成后,它将成为世界最快的计算机。

在报道文章中,Meta  表示新超算 AI Research SuperCluster(RSC)将帮助该公司构建更好的 AI  模型,这些模型可以从数万亿个示例中学习,构建跨数百种语言的模型,并同时分析文本内容、图像和视频,确定内容是否有害。当然,RSC  超算也可以用来开发新一代增强现实工具。

Meta 表示,该平台不仅有助于确保人们今天使用 Facebook 服务的安全性,而且在公司为元宇宙构建的将来也会发挥作用。

image.png

社交媒体起家的脸书在去年 10 月更名为 Meta,以反映其对元宇宙的关注,它认为元宇宙将成为移动互联网的继承者。

近几个月,元宇宙当之无愧是科技圈最热的词汇之一,这个概念指的是人们可以通过不同的设备访问共享的虚拟环境,在该环境里人们可以工作、娱乐和社交。「构建元宇宙需要巨大的计算能力(quintillion  级,10 的 18 次方),」Meta 首席执行官马克 · 扎克伯格(Mark Zuckerberg)在 Facebook 上说道: 「AI 和  RSC 将使新的人工智能模型成为可能,它们可以从数以万亿计的例子中学习,理解数百种语言甚至更多。」

Meta 表示,它相信 RSC 是目前运行速度最快的人工智能超级计算机之一。Meta 的一位发言人说,该公司已经与英伟达、Pure Storage 和 Penguin Computing 的团队合作,共同构建这台超级计算机。

高性能计算基础设施是用于训练大规模预训练模型的必要条件。Meta  表示,其 AI 研究团队一直在构建高性能系统,自研的第一代算力设施设计于 2017 年,在单个集群中拥有 2.2 万个英伟达 V100  Tensor Core GPU,每天可执行 3.5 万个训练任务。到目前为止,该基础设施在性能、可靠性和生产力方面为 Meta  研究人员确立了基准。

2020  年初,Facebook 认定加速算力增长的最佳方式是从头开始设计全新计算基础架构,以利用新的 GPU 和网络结构技术。该公司希望新 AI  超算能够在 1 EB 字节大的数据集上训练具有超过一万亿个参数的模型——仅从规模上看,这相当于 36000 年时长的高清晰度视频。

image.png

如此规模的超算肯定不能仅用于科研,Meta  表示,RSC 可以训练来自 Meta  生产系统的真实示例,确保新研究能有效地转化为实践。其推动的新模型可识别社交网络平台上的有害内容,并推动多模态人工智能,以帮助改善用户体验。Meta  认为,这是第一次有人以如此规模同时解决性能、可靠性、安全性和隐私问题。

RSC 的秘密

02.gif

AI 超算主要用于人工智能模型的训练,是通过将多个 GPU 组合成计算节点来构建的,其通过高性能网络结构连接这些节点,以实现 GPU 之间的快速通信。

RSC  有 760 个 NVIDIA DGX A100 系统作为其计算节点,总共有 6080 块 GPU,每块 A100 GPU 都比 Meta  之前系统中使用的 V100 更强大。每个 DGX 通过没有超负荷的 NVIDIA Quantum 1600 Gb/s InfiniBand 两级  Clos 结构进行通信。RSC 的存储层具有 175 PB 的 Pure Storage FlashArray、46 PB 的 Penguin  Computing Altus 系统中的缓存存储和 10 PB 的 Pure Storage FlashBlade。

image.png

与  Meta 的传统生产和研究基础设施相比,RSC 的早期基准测试表明,它运行计算机视觉工作流程的速度是之前的 20 倍,运行英伟达多卡通信框架  (NCCL) 的速度快了 9 倍,训练大规模 NLP 模型快了 3 倍。这意味着一个拥有数百亿参数的模型可以在 3  周内完成训练,而之前这一数字是 9 周。

作为参考,在最新一次  MLPerf 神经网络训练基准中测试的最大生产就绪(production-ready)系统是英伟达部署的 4320-GPU  系统,该系统可以在不到一分钟的时间内训练 BERT 。然而,BERT「只有」1.1 亿个参数,与 Meta 想要使用的数万亿个参数也无法相比。

RSC 的推出还伴随着 Meta 使用数据进行研究的方式的变化:

与我们之前仅利用开源和其他公开可用数据集的 AI 研究基础设施不同,RSC 允许我们在模型训练中包含来自 Meta 生产系统的真实示例,确保研究有效地转化为实践。

研究人员还写道,RSC  将采取额外的预防措施来加密和匿名这些数据,以防止泄漏。这些步骤包括将 RSC 与更大的互联网隔离既没有入站连接也没有出站连接,RSC  的流量只能从 Meta 的生产数据中心流入。此外,存储和 GPU 之间的数据路径是端到端加密的,数据是匿名的,并经过审查过程以确认匿名。

拓展计划

AI 超算 RSC 已经于昨天正式启用,但它的开发仍在进行中。Meta 表示,一旦完成构建 RSC 的第二阶段,它将可能成为全球最快的 AI 超级计算机,其混合精度计算性能接近 5 exaflops(10 的 18 次方)。

在  2022 年,Meta 正计划将 GPU 的数量从 6080 个增加到 16000 个,这将使 AI 训练性能提高 2.5  倍以上。InfiniBand 互联结构将扩展为支持 16000 个端口,采用两层拓扑结构。该系统的存储系统将具有 16 TB/s  的目标交付带宽和 EB 级容量,以满足不断增长的需求。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
23天前
|
人工智能 并行计算 安全
从零到一,打造专属AI王国!大模型私有化部署全攻略,手把手教你搭建、优化与安全设置
【10月更文挑战第24天】本文详细介绍从零开始的大模型私有化部署流程,涵盖需求分析、环境搭建、模型准备、模型部署、性能优化和安全设置六个关键步骤,并提供相应的示例代码,确保企业能够高效、安全地将大型AI模型部署在本地或私有云上。
207 7
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
10天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
47 3
|
19天前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
87 2
|
12天前
|
人工智能 弹性计算 Serverless
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
本文介绍了零售业中“人—货—场”三要素的变化,指出传统营销方式已难以吸引消费者。现代消费者更注重个性化体验,因此需要提供超出预期的内容。文章还介绍了阿里云基于函数计算的AI大模型,特别是Stable Diffusion WebUI,帮助非专业人士轻松制作高质量的促销海报。通过详细的部署步骤和实践经验,展示了该方案在实际生产环境中的应用价值。
45 6
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
|
23天前
|
存储 人工智能 数据可视化
高效率,低成本!且看阿里云AI大模型如何帮助企业提升客服质量和销售转化率
在数字化时代,企业面临海量客户对话数据处理的挑战。阿里云推出的“AI大模型助力客户对话分析”解决方案,通过先进的AI技术和智能化分析,帮助企业精准识别客户意图、发现服务质量问题,并生成详尽的分析报告和可视化数据。该方案采用按需付费模式,有效降低企业运营成本,提升客服质量和销售转化率。
高效率,低成本!且看阿里云AI大模型如何帮助企业提升客服质量和销售转化率
|
9天前
|
人工智能 新制造 芯片
2024年中国AI大模型产业发展报告解读
2024年,中国AI大模型产业迎来蓬勃发展,成为科技和经济增长的新引擎。本文解读《2024年中国AI大模型产业发展报告》,探讨产业发展背景、现状、挑战与未来趋势。技术进步显著,应用广泛,但算力瓶颈、资源消耗和训练数据不足仍是主要挑战。未来,云侧与端侧模型分化、通用与专用模型并存、大模型开源和芯片技术升级将是主要发展方向。
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。
|
17天前
|
人工智能 JSON 自然语言处理
基于文档智能&RAG搭建更懂业务的AI大模型
本文介绍了一种结合文档智能和检索增强生成(RAG)技术,构建强大LLM知识库的方法。通过清洗文档内容、向量化处理和特定Prompt,提供足够的上下文信息,实现对企业级文档的智能问答。文档智能(Document Mind)能够高效解析多种文档格式,确保语义的连贯性和准确性。整个部署过程简单快捷,适合处理复杂的企业文档,提升信息提取和利用效率。
|
13天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
70 4

热门文章

最新文章