0 前言
在软件研发这个领域,程序员的终极目标都是想成为一名合格的架构师。然而梦想很美好,但现实却很曲折。
在实际工作中,程序员会分很多种,有的擅长编码实现,有的擅长底层原理,有的擅长逻辑实现等等,在各自的领域都表现不俗、担当核心,然而,面临更高层架构设计时,很多优秀的程序员却折戟沙场,未能完成华丽转身。
架构的真谛是什么呢?架构真的如此难把控吗?难道真的只有天资聪慧、天赋异能的程序员才能驾驭架构吗?
不要气馁,平常心,其实人人都是架构师 ,可能你做的任一一件事已无形中用到了架构。
本篇文章将带您慢慢走进架构,揭秘架构的真谛。正如,架构不是神秘物,吸取真谛即了然 。
1 架构的背景
如果想要深入理解某一事物的本质,最好的方式就是去追寻这个事物出现的历史背景和推动因素。所以我们先来梳理一下软件开发的进化史,探索一下软件架构出现的历史背景。
1.1 机器语言
最早的软件开发使用的是“机器语言”,其直接使用二进制码0和1来表示机器可以识别的指令和数据。
比如:为了完成“将寄存器 BX 的内容送到 AX 中”,机器语言如下:
1000100111011000
面对上面的1&0的字符串,不用多说,程序员心里肯定会万马奔腾吧,更别说输入错误要去定位问题,求程序员的心里阴影面积?
归纳一下,机器语言的主要问题是三难:
太难写、太难读、太难改!
1.2 汇编语言
为了解决机器语言编写、阅读、修改复杂的问题,汇编语言应运而生。汇编语言又叫“符号语言”,用助记符代替机器指令的操作码,用地址符号(Symbol)或标号(Label),代替指令或操作数的地址 。
比如:为了完成“将寄存器 BX 的内容送到 AX 中”,汇编语言如下:
mov ax,bx
相比机器语言来说,汇编语言就清晰得多了。汇编语言虽然解决了机器语言读写复杂的问题,但本质上还是面向机器的,因为写汇编语言需要我们精确了解计算机底层的知识 。
面向机器的语言,带来的问题就是 :
汇编语言需要针对不同 CPU 的汇编指令和结构,代码编写多份。
1.3 高级语言
为了解决汇编语言的问题,前辈们又设计出了一个“高级语言”。为什么会叫“高级语言”呢?原因在于这些语言让程序员不需要关注机器底层的低级结构和指令,只需要关注具体的问题和业务即可 。
比如:以4+6=?这个加法为例,如果用Lisp语言,只需要简单一行代码:
(+ 4 6)
除此以外,通过编译程序的处理,高级语言可以被编译为适合不同CPU指令的机器语言。程序员只要写一次程序,就可以在不同的机器上编译运行,无须根据不同的机器指令重写整个程序 。
1.4 两次软件危机
- 第一次软件危机与结构化程序设计
高级语言的出现,解放了程序员,但好景不长,随着软件的规模和复杂度的大大增加 ,软件质量低下,质量把控难度高,项目无法如期完成,严重超支等现象。例如,1963 年美国的 水手一号火箭发射失败事故,就是因为一行 FORTRAN 代码错误导致的。
所以,为了解决上面的问题,针对性的提出了解决方法“软件工程” ,虽然“软件工程”提出之后也曾被视为软件领域的银弹,但后来事实证明,软件工程同样无法根除软件危机,只能在一定程度上缓解软件危机 。
差不多同一时间,“结构化程序设计” 作为另外一种解决软件危机的方案被提了出来。结构化程序设计的主要特点是抛弃 goto 语句,采取“自顶向下、逐步细化、模块化”的指导思想 。
结构化程序设计本质上还是一种面向过程的设计思想 ,但通过“自顶向下、逐步细化、模块化”的方法,将软件的复杂度控制在一定范围内 ,从而从整体上降低了软件开发的复杂度。
- 第二次软件危机与面向对象
结构化编程的风靡在一定程度上缓解了软件危机,然而随着硬件的快速发展,业务需求越来越复杂 ,以及编程应用领域越来越广泛,第二次软件危机很快就到来了。
第二次软件危机的根本原因还是 在于软件生产力远远跟不上硬件和业务的发展 。
第一次软件危机的根源在于 软件的“逻辑”变得非常复杂 ;
第二次软件危机主要体现在 软件的“扩展”变的非常复杂 ;
- 结构化程序设计虽然能够缓解软件逻辑的复杂性,但是对于业务变化带来的软件扩展却无能为力 。软件领域迫切希望找到新的银弹来解决软件危机,在这种背景下,面向对象的思想开始流行起来。
虽然面向对象开始也被当做解决软件危机的银弹,在一定程度上解决了软件“扩展”带来的复杂性。但事实证明,和软件工程、结构化程度设计一样,面向对象也不是银弹,而只是一种新的软件方法而已 。
1.5 软件架构的产生
与之前的各种新方法或者新理念不同的是,“软件架构”出现的背景并不是整个行业都面临类似相同的问题,“软件架构”也不是为了解决新的软件危机而产生的,这是怎么回事呢 ?
随着软件系统规模的增加,计算相关的算法和数据结构不再构成主要的设计问题 。当系统由许多部分组成时,整个系统的组织,也就是所说的“软件架构”,产生了一系列新的设计问题。比如:
- 系统规模庞大,内部耦合严重,开发效率低;
- 系统耦合严重,牵一发动全身,后续修改和扩展困难;
- 系统逻辑复杂,容易出问题,出问题后很难排查和修复;
“软件架构”的出现有其历史必然性。第一次软件危机引出了“结构化编程”,创造了“模块”概念;第二次软件危机引出了“面向对象编程”,创造了“对象”概念;直到“软件架构”的产生,创造了“组件”概念 。
“模块”、“对象”和“组件”本质上都是对达到一定规模的软件进行拆分,差别只是在于随着软件的复杂度不断增加,拆分的粒度越来越粗,拆分的层次越来越高。
2 架构指什么
对于技术人员来说,“架构”是一个再常见不过的词了。当提起“架构”这个词时,如果去深究一下:“架构”到底指什么 ?大部分人也许并不一定能够准确地回答。1000个人心中可能有1001种架构的含义。
那么如何才能准确的理解架构呢?理解架构首先理解三个有关系而又相似的概念,包括:系统与子系统、模块与组件、框架与架构 。
2.1 系统与子系统
关于“系统”的定义,我们先来看维基百科的定义:
系统泛指由一群 有关联 的个体组成,根据某种 规则运作 ,能完成 个别元件不能单独完成的工作的群体。它的意思是“总体”、“整体”或“联盟”。
来提炼下里面的关键信息:
- 关联 :系统是由一群有关联的个体组成的,没有关联的个体堆在一起不能成为一个系统,例如:把一个发动机和一台PC放在一起不能称之为一个系统,把发动机、底盘、轮胎、车架组合起来才能成为一台汽车。
- 规则 :系统内的个体需要按照指定的规则运作,而不是单个个体各自为政。规则规定了系统内个体分工和协作的方式。例如:汽车发动机负责产生动力,然后通过变速器和传动轴,将动力输出到轮胎上,从而驱动汽车前进。
- 能力 :系统能力和个体能力有本质的差别,系统能力也不是个体能力之和,而是产生了新的能力。例如:汽车能够载重前进,而发动机、变速器、传动轴、车轮本身都不具备这样的能力。
再来看下子系统的定义:
子系统也是由一群有关联的个体所组成的系统,多半会是更大系统中的一部分。
其实子系统和系统的定义是一样的,只是观察的角度有差异 ,一个系统可能是另外一个更大系统的子系统。
按照这个定义,系统和子系统比较容易理解。以微信为例来做一个分析:
- 微信本身是一个系统,包含聊天、登录、支付、朋友圈等子系统;
- 朋友圈这个系统又包括动态、评论、点赞等子系统;
- 评论这个系统可能又包括防刷子系统、审核子系统、发布子系统、存储子系统等;
- 评论审核子系统不再包含业务意义上的子系统,而是包括各个模块或者组件,这些模块或者组件本身也是另外一个维度上的系统,例如:MySQL、Redis等存储系统,但不是业务子系统。
2.2 模块与组件
从逻辑的角度来拆分系统,得到的单元就是“模块”;从物理的角度来拆分系统,得到的单元就是“组件”。划分模块的主要目的是职责分离;划分组件的主要目的是单元复用 。其实,“组件”的英文“component”也可以翻译成中文的“零件”一词,“零件”更容易理解一些,“零件”是一个物理的概念,并且具备“独立且可替换”的特点。
2.3 框架与架构
单纯从定义的角度来看,框架关注的是“规范”,架构关注的是“结构” 。框架的英文是“Framework”,架构的英文是“Architecture”。
我们经常会说,比如:“工程采用的是MVC架构”、“工程使用的是SSH框架”等。所以,第一句话是站在结构的层面来说明,第二句话是站在规范的层面来说明。
同时,如果是以不同的角度来说明结构,会得出不同的架构描述,比如:
- 从业务逻辑的角度分解,“学生管理系统”的架构
- 从物理部署的角度分解,“学生管理系统”的架构
- 从开发结构的角度分解,“学生管理系统”的架构
2.4 重新定义架构
软件架构指软件系统的顶层结构 。
首先 ,“系统是一群关联个体组成”,这些“个体”可以是“子系统”、“模块”、“组件”等;架构需要明确系统包含哪些“个体” 。
其次 ,系统中的个体需要“根据某种规则”运作,架构需要明确个体运作和协作的规则 。
3. 架构的目标
架构其实就是为了应对软件系统复杂度而提出的解决方案。架构关键思维即为判断与取舍 。
正如,在一个有约束的盒子里去求解或接近最合适的解。这个约束的盒子可能会包含团队经验、成本、资源、时间、业务阶段等因素掺杂在一起的综合体,针对这个综合体,分析出系统架构的复杂度,进行合适的判断与取舍 ,从而设计出恰当的架构用在合适的软件系统中。