【Elastic Engineering】Elasticsearch:分页搜索结果

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: Elasticsearch:分页搜索结果

作者:刘晓国


在我之前的文章:


Elasticsearch:运用 scroll 接口对大量数据实现更好的分页

Elasticsearch:运用 search_after 来进行深度分页


我讲述了如何针对大量搜索结果进行分页的描述。随着时间点 API(Point in time API)的推出,根据 Elastic 的官方博客 “使用 Elasticsearch 时间点读取器获得随时间推移而保持一致的数据视图”,Scroll 接口将不被推荐作为对搜索结果的分页。


默认情况下,搜索会返回前 10 个匹配的匹配项。 要翻阅更大的结果集,你可以使用搜索 API 的 from 和 size 参数。 from 参数定义要跳过的命中数,默认为 0。 size 参数是要返回的最大命中数。 这两个参数共同定义了一页结果。比如:

GET /twitter/_search
{
  "from": 5,
  "size": 20,
  "query": {
    "match": {
      "city": "北京"
    }
  }
}

避免使用 from 和 size 来分页太深或一次请求太多结果。 搜索请求通常跨越多个分片。 每个分片必须将其请求的命中和任何先前页面的命中加载到内存中。 对于深页面或大型结果集,这些操作会显着增加内存和 CPU 使用率,从而导致性能下降或节点故障。这里的原因是 index.max_result_window 的默认值是 10K,也就是说 from+size 的最大值是1万。搜索请求占用堆内存和时间与 from+size 成比例,这限制了内存。假如你想 hit 从 990 到 1000,那么每个 shard 至少需要 1000 个文档:

image.png

默认情况下,你不能使用 from 和 size 来翻阅超过 10,000 次点击。 此限制是由 index.max_result_window 索引设置设置的保护措施。 如果你需要翻阅超过 10,000 次点击,请改用 search_after 参数。


警告:Elasticsearchimage.png使用 Lucene 的内部文档 ID 作为 tie_breaker。 这些内部文档 ID 可以在相同数据的副本之间完全不同。 当分页搜索命中时,你可能偶尔会看到具有相同排序值的文档排序不一致。


Search after


你可以使用 search_after 参数使用上一页中的一组 sort values 来检索下一页的命中。


使用 search_after 需要具有相同查询和排序值的多个搜索请求。 如果在这些请求之间发生刷新,结果的顺序可能会发生变化,从而导致跨页面的结果不一致。 为防止出现这种情况,你可以创建一个时间点 (PIT) 以保留搜索中的当前索引状态。

POST /my-index-000001/_pit?keep_alive=1m

上面的命令返回一个 PIT id:

{
  "id": "46ToAwMDaWR5BXV1aWQyKwZub2RlXzMAAAAAAAAAACoBYwADaWR4BXV1aWQxAgZub2RlXzEAAAAAAAAAAAEBYQADaWR5BXV1aWQyKgZub2RlXzIAAAAAAAAAAAwBYgACBXV1aWQyAAAFdXVpZDEAAQltYXRjaF9hbGw_gAAAAA=="
}

要获取第一页结果,请提交带有排序参数的搜索请求。 如果使用 PIT,请在 pit.id 参数中指定 PIT id,并从请求路径中省略目标数据流或索引。


重要:所有 PIT 搜索请求都添加了一个名为 _shard_doc 的隐式排序 tiebreaker 字段,该字段也可以显式提供。 如果 你不能使用 PIT,我们建议你在排序中包含一个 tiebreaker 字段。 此 tiebreaker 字段应包含每个文档的唯一值。 如果你不包含 tiebreaker 字段,你的分页结果可能会丢失或重复命中。


注意:当排序顺序为 _shard_doc 且未跟踪总命中数(total hits)时,请求后搜索进行了优化,使它们更快。 如果你想遍历所有文档而不考虑顺序,这是最有效的选择。


重要:如果排序字段在某些目标数据流或索引中是 date,但在其他目标中是 date_nanos 字段,请使用 numeric_type 参数将值转换为单一分辨率,并使用 format 参数为排序字段指定日期格式。 否则,Elasticsearch 将无法正确解释每个请求中的 search after 参数。

GET /_search
{
  "size": 10000,
  "query": {
    "match": {
      "user.id": "elkbee"
    }
  },
  "pit": {
    "id": "46ToAwMDaWR5BXV1aWQyKwZub2RlXzMAAAAAAAAAACoBYwADaWR4BXV1aWQxAgZub2RlXzEAAAAAAAAAAAEBYQADaWR5BXV1aWQyKgZub2RlXzIAAAAAAAAAAAwBYgACBXV1aWQyAAAFdXVpZDEAAQltYXRjaF9hbGw_gAAAAA==",
    "keep_alive": "1m"
  },
  "sort": [
    {
      "@timestamp": {
        "order": "asc",
        "format": "strict_date_optional_time_nanos",
        "numeric_type": "date_nanos"
      }
    }
  ]
}

在上面,我们使用 pit.id 来进行搜索。在 sort 里,在 _shard_doc 升序上使用隐式 tiebreaker 对搜索的命中进行排序。


搜索响应包括每个命中的 sort 值数组。 如果你使用了 PIT,则将包含一个 tiebreaker 作为每个命中的最后一个排序值。 这个名为 _shard_doc 的 tiebreaker 会自动添加到使用 PIT 的每个搜索请求中。 _shard_doc 值是 PIT 中的分片索引和 Lucene 的内部文档 ID 的组合,它在每个文档中是唯一的,并且在 PIT 中是常量。 你还可以在搜索请求中显式添加 tiebreaker 以自定义顺序:

GET /_search
{
  "size": 10000,
  "query": {
    "match": {
      "user.id": "elkbee"
    }
  },
  "pit": {
    "id": "46ToAwMDaWR5BXV1aWQyKwZub2RlXzMAAAAAAAAAACoBYwADaWR4BXV1aWQxAgZub2RlXzEAAAAAAAAAAAEBYQADaWR5BXV1aWQyKgZub2RlXzIAAAAAAAAAAAwBYgACBXV1aWQyAAAFdXVpZDEAAQltYXRjaF9hbGw_gAAAAA==",
    "keep_alive": "1m"
  },
  "sort": [
    {
      "@timestamp": {
        "order": "asc",
        "format": "strict_date_optional_time_nanos"
      }
    },
    {
      "_shard_doc": "desc"
    }
  ]
}

在上面,我们是有 pit.id 来进行搜索。同时,我们在 _shard_doc 降序上使用显式 tiebreaker 对搜索进行排序。

{
  "pit_id" : "46ToAwMDaWR5BXV1aWQyKwZub2RlXzMAAAAAAAAAACoBYwADaWR4BXV1aWQxAgZub2RlXzEAAAAAAAAAAAEBYQADaWR5BXV1aWQyKgZub2RlXzIAAAAAAAAAAAwBYgACBXV1aWQyAAAFdXVpZDEAAQltYXRjaF9hbGw_gAAAAA==", 
  "took" : 17,
  "timed_out" : false,
  "_shards" : ...,
  "hits" : {
    "total" : ...,
    "max_score" : null,
    "hits" : [
      ...
      {
        "_index" : "my-index-000001",
        "_id" : "FaslK3QBySSL_rrj9zM5",
        "_score" : null,
        "_source" : ...,
        "sort" : [                                
          "2021-05-20T05:30:04.832Z",
          4294967298                              
        ]
      }
    ]
  }
}

从上面的返回结果中,我们可以看出来一个被更新的 pit.id。在 sort 里,它定义了最近返回命中的 sort 值。上面的 4294967298 是一个 tiebreaker 值。在 pit_id 中每个文档都是唯一的。


要获得下一页结果,请使用最后一次命中的排序值(包括 tiebreaker)作为 search_after 参数重新运行先前的搜索。 如果使用 PIT,请在 pit.id 参数中使用最新的 PIT ID。 搜索的查询和排序参数必须保持不变。 如果提供,则 from 参数必须为 0(默认值)或 -1。

GET /_search
{
  "size": 10000,
  "query": {
    "match": {
      "user.id": "elkbee"
    }
  },
  "pit": {
    "id": "46ToAwMDaWR5BXV1aWQyKwZub2RlXzMAAAAAAAAAACoBYwADaWR4BXV1aWQxAgZub2RlXzEAAAAAAAAAAAEBYQADaWR5BXV1aWQyKgZub2RlXzIAAAAAAAAAAAwBYgACBXV1aWQyAAAFdXVpZDEAAQltYXRjaF9hbGw_gAAAAA==",
    "keep_alive": "1m"
  },
  "sort": [
    {
      "@timestamp": {
        "order": "asc",
        "format": "strict_date_optional_time_nanos"
      }
    }
  ],
  "search_after": [
    "2021-05-20T05:30:04.832Z",
    4294967298
  ],
  "track_total_hits": false
}


请注意:


在上面的请求中,pit.id 是上一个请求返回来的 pit.id 值

在 search_after 里定义的是是上一次请求最后一个命中返回的 sort 值

我们在这个请求中把 track_total_hits 设置为 false 来 禁用对总点击数的跟踪以加快分页速度

你可以重复此过程以获取其他页面的结果。 如果使用 PIT,你可以使用每个搜索请求的 keep_alive 参数延长 PIT 的保留期。


完成后,你应该删除 PIT。

DELETE /_pit
{
    "id" : "46ToAwMDaWR5BXV1aWQyKwZub2RlXzMAAAAAAAAAACoBYwADaWR4BXV1aWQxAgZub2RlXzEAAAAAAAAAAAEBYQADaWR5BXV1aWQyKgZub2RlXzIAAAAAAAAAAAwBYgACBXV1aWQyAAAFdXVpZDEAAQltYXRjaF9hbGw_gAAAAA=="
}


参考:


【1】https://www.elastic.co/guide/en/elasticsearch/reference/current/paginate-search-results.html

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
3月前
|
存储 自然语言处理 BI
|
3天前
|
数据采集 人工智能 运维
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
|
15天前
|
机器学习/深度学习 人工智能 运维
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
阿里云技术公开课预告:Elastic和阿里云搜索技术专家将深入解读阿里云Elasticsearch Enterprise版的AI功能及其在实际应用。
116 2
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
|
18天前
|
存储 人工智能 API
(Elasticsearch)使用阿里云 infererence API 及 semantic text 进行向量搜索
本文展示了如何使用阿里云 infererence API 及 semantic text 进行向量搜索。
|
14天前
|
搜索推荐 API 定位技术
一文看懂Elasticsearch的技术架构:高效、精准的搜索神器
Elasticsearch 是一个基于 Lucene 的开源搜索引擎,以其强大的全文本搜索功能和快速的倒排索引技术著称。它不仅支持数字、文本、地理位置等多类型数据,还提供了可调相关度分数、高级查询 DSL 等功能。Elasticsearch 的核心技术流程包括数据导入、解析、索引化、查询处理、得分计算及结果返回,确保高效处理大规模数据并提供准确的搜索结果。通过 RESTful API、Logstash 和 Filebeat 等工具,Elasticsearch 可以从多种数据源中导入和解析数据,支持复杂的查询需求。
67 0
|
2月前
|
存储 缓存 固态存储
Elasticsearch高性能搜索
【11月更文挑战第1天】
51 6
|
2月前
|
API 索引
Elasticsearch实时搜索
【11月更文挑战第2天】
52 1
|
3月前
|
人工智能
云端问道12期-构建基于Elasticsearch的企业级AI搜索应用陪跑班获奖名单公布啦!
云端问道12期-构建基于Elasticsearch的企业级AI搜索应用陪跑班获奖名单公布啦!
187 2
|
3月前
|
Web App开发 JavaScript Java
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
这篇文章是关于如何使用Spring Boot整合Elasticsearch,并通过REST客户端操作Elasticsearch,实现一个简单的搜索前后端,以及如何爬取京东数据到Elasticsearch的案例教程。
250 0
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
|
4月前
|
存储 缓存 自然语言处理
深度解析ElasticSearch:构建高效搜索与分析的基石
【9月更文挑战第8天】在数据爆炸的时代,如何快速、准确地从海量数据中检索出有价值的信息成为了企业面临的重要挑战。ElasticSearch,作为一款基于Lucene的开源分布式搜索和分析引擎,凭借其强大的实时搜索、分析和扩展能力,成为了众多企业的首选。本文将深入解析ElasticSearch的核心原理、架构设计及优化实践,帮助读者全面理解这一强大的工具。
307 7

热门文章

最新文章

相关产品

  • 检索分析服务 Elasticsearch版