初识阿里云E-MapReduce ClickHouse,到底有哪些优势?

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 本文将从核心能力、主要优势,及典型应用场景为大家继续介绍EMR~

B4F8CCBE-0101-4fc0-9E1A-6FD433E0EA33.png

我们目前正在开展的“云上漫步”第三期:基于EMR离线数据分析活动,能够很好的体验到EMR的各项操作,便于你在实操中了解EMR的优势与特点。同时提交体验反馈还有机会获得实物奖励,点我立即参与


EMR ClickHouse 用户交流群:
lADPJxuMPONilH3NA97NAu4_750_990.jpg


相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
目录
相关文章
|
1月前
|
存储 分布式计算 数据库
阿里云国际版设置数据库云分析工作负载的 ClickHouse 版
阿里云国际版设置数据库云分析工作负载的 ClickHouse 版
|
3月前
|
SQL 分布式计算 数据处理
|
4月前
|
存储 大数据 关系型数据库
从 ClickHouse 到阿里云数据库 SelectDB 内核 Apache Doris:快成物流的数智化货运应用实践
目前已经部署在 2 套生产集群,存储数据总量达百亿规模,覆盖实时数仓、BI 多维分析、用户画像、货运轨迹信息系统等业务场景。
|
6月前
|
存储 Cloud Native 大数据
国内独家|阿里云瑶池发布ClickHouse企业版:云原生Serverless新体验
全面升级为云原生架构,支持云原生按需弹性Serverless能力,解决了长期困扰用户的集群扩展效率和平滑性问题。
国内独家|阿里云瑶池发布ClickHouse企业版:云原生Serverless新体验
|
6月前
|
存储 容灾 Cloud Native
阿里云ClickHouse企业版正式商业化,为开发者提供容灾性更好、性价比更高的实时数仓
2024年4月23日,阿里云联合 ClickHouse Inc. 成功举办了企业版商业化发布会。阿里云 ClickHouse 企业版是阿里云和 ClickHouse 原厂 ClickHouse. Inc 独家合作的存算分离的云原生版本,支持资源按需弹性 Serverless,帮助企业降低成本的同时,为企业带来更多商业价值。
524 1
|
6月前
|
SQL 数据可视化 Apache
阿里云数据库内核 Apache Doris 兼容 Presto、Trino、ClickHouse、Hive 等近十种 SQL 方言,助力业务平滑迁移
阿里云数据库 SelectDB 内核 Doris 的 SQL 方言转换工具, Doris SQL Convertor 致力于提供高效、稳定的 SQL 迁移解决方案,满足用户多样化的业务需求。兼容 Presto、Trino、ClickHouse、Hive 等近十种 SQL 方言,助力业务平滑迁移。
阿里云数据库内核 Apache Doris 兼容 Presto、Trino、ClickHouse、Hive 等近十种 SQL 方言,助力业务平滑迁移
|
6月前
|
云安全 运维 安全
阿里云国际站ATT&CK 多产品安全实践
本文根据MITRE ATT&CK的Cloud Matrix攻防知识图谱的·解读,介绍如何在阿里云国际站上通过多产品的组合实践,加强您的云安全防护能力,更好地达到安全运营的效果。
276 1
阿里云国际站ATT&CK 多产品安全实践
|
6月前
|
存储 缓存 运维
阿里云数据库 ClickHouse 云原生版产品解析
ClickHouse 介绍ClickHouse 是一款当前非常流行的开源在线分析型数据库。ClickHouse 主要应用于实时数仓构建、大数据加速分析、宽表日志分析等通用场景,服务于流量漏斗分析,用户行为分析,人群圈选,用户画像,广告投放人群评估、ABTest 、大促分析,CDP/DMP 等业务场景...
184 0
|
5月前
|
存储 关系型数据库 数据库
【DDIA笔记】【ch2】 数据模型和查询语言 -- 多对一和多对多
【6月更文挑战第7天】该文探讨数据模型,比较了“多对一”和“多对多”关系。通过使用ID而不是纯文本(如region_id代替"Greater Seattle Area"),可以实现统一、避免歧义、简化修改、支持本地化及优化搜索。在数据库设计中,需权衡冗余和范式。文档型数据库适合一对多但处理多对多复杂,若无Join,需应用程序处理。关系型数据库则通过外键和JOIN处理这些关系。文章还提及文档模型与70年代层次模型的相似性,层次模型以树形结构限制了多对多关系处理。为克服层次模型局限,发展出了关系模型和网状模型。
60 6
|
5月前
|
XML NoSQL 数据库
【DDIA笔记】【ch2】 数据模型和查询语言 -- 概念 + 数据模型
【6月更文挑战第5天】本文探讨了数据模型的分析,关注点包括数据元素、关系及不同类型的模型(关系、文档、图)与Schema模式。查询语言的考量涉及与数据模型的关联及声明式与命令式编程。数据模型从应用开发者到硬件工程师的各抽象层次中起着简化复杂性的关键作用,理想模型应具备简洁直观和可组合性。
41 2

相关产品

  • 开源大数据平台 E-MapReduce
  • 下一篇
    无影云桌面