别再用平均池化层了!Meta AI把注意力塞到池化层,性能立刻提升0.3(二)

简介: 注意力机制这么好用,怎么不把它塞到卷积网络里?最近Meta AI的研究人员提出了一个基于注意力的池化层,仅仅把平均池化层替换掉,就能获得+0.3%的性能提升!

研究人员对模型块的选择也提出了一些建议,例如在batch size够大的情况下,BatchNorm往往效果比LayerNorm更好。但训练大模型或者高分辨率的图像输入时,由于batch size更小,所以BatchNorm在这种情况下就不太实用了。

 

下一个模块就是基于注意力的池化层了。

 

在主干模型的输出端,预处理后的向量通过类似Transformer的交叉注意力层(cross attention layer)的方式进行融合。

96.jpg注意力层中的每个权重值取决于预测patch与可训练向量(CLS)之间的相似度,结果和经典ViT中的class token类似。

 

然后将产生的d维向量添加到CLS向量中,并经过一个前馈网络处理。

 

与之前提出的class-attention decoder不同之处在于,研究人员仅仅只用一个block和一个head,大幅度简化了计算量,也能够避免多个block和head之间互相影响,从而导致注意力权重失真。

 

因此,class token和预处理patch之间的通信只发生在一个softmax中,直接反映了池化操作者如何对每个patch进行加权。

 

也可以通过将CLS向量替换为k×d矩阵来对每个类别的attention map进行归一化处理,这样就可以看出每个块和每个类别之间的关联程度。

 

但这种设计也会增加内存的峰值使用量,并且会使网络的优化更加复杂。通常只在微调优化的阶段以一个小的学习率和小batch size来规避这类问题。

 

实验结果


在图像分类任务上,研究人员首先将模型与ImageNet1k和ImageNet-v2上的其他模型从参数量,FLOPS,峰值内存用量和256张图像batch size下的模型推理吞吐量上进行对比。

 

97.jpg实验结果肯定是好的,可以看到PatchConvNet的简单柱状结构(column architecture)相比其他模型更加简便和易于扩展。对于高分辨率图像来说,不同模型可能会针对FLOPs和准确率进行不同的平衡,更大的模型肯定会取得更高的准确率,相应的吞吐量就会低一些。

 

在语义分割任务上,研究人员通过ADE20k数据集上的语义分割实验来评估模型,数据集中包括2万张训练图像和5千张验证图像,标签超过150个类别。由于PatchConvNet模型不是金字塔式的,所以模型只是用模型的最后一层输出和UpperNet的多层次网络输出,能够简化模型参数。研究结果显示,虽然PatchConvNet的结构更简单,但与最先进的Swin架构性能仍处于同一水平,并且在FLOPs-MIoU权衡方面优于XCiT。

98.jpg在检测和实例分割上,研究人员在COCO数据集上对模型进行评估,实验结果显示PatchConvNet相比其他sota架构来说,能够在FLOPs和AP之间进行很好的权衡。99.jpg在消融实验中,为了验证架构问题,研究人员使用不同的架构对比了Transformer中的class attention和卷积神经网络的平均池化操作,还对比了卷积主干和线性投影之间的性能差别等等。实验结果可以看到卷积主干是模型取得最佳性能的关键,class-attention几乎没有带来额外的性能提升。

100.jpg另一个重要的消融实验时attention-based pooling和ConvNets之间的对比,研究人员惊奇地发现可学习的聚合函数甚至可以提高一个ResNet魔改后模型的性能。

 

通过把attention添加到ResNet50中,直接在Imagenet1k上获得了80.1%的最高准确率,比使用平均池化层的baseline模型提高了+0.3%的性能,并且attention-based只稍微增加了模型的FLOPs数量,从4.1B提升到4.6B。

相关文章
|
2月前
|
人工智能 运维 安全
从被动防御到主动免疫进化!迈格网络 “天机” AI 安全防护平台,助推全端防护性能提升
迈格网络推出“天机”新版本,以AI自学习、全端防护、主动安全三大核心能力,重构网络安全防线。融合AI引擎与DeepSeek-R1模型,实现威胁预测、零日防御、自动化响应,覆盖Web、APP、小程序全场景,助力企业从被动防御迈向主动免疫,护航数字化转型。
从被动防御到主动免疫进化!迈格网络 “天机” AI 安全防护平台,助推全端防护性能提升
|
4月前
|
机器学习/深度学习 人工智能 编解码
智谱AI发布新版VLM开源模型GLM-4.1V-9B-Thinking,引入思考范式,性能提升8倍
视觉语言大模型(VLM)已经成为智能系统的关键基石。
989 0
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI Compass前沿速览:IndexTTS2–B站、HuMo、Stand-In视觉生成框架、Youtu-GraphRAG、MobileLLM-R1–Meta、PP-OCRv5
AI Compass前沿速览:IndexTTS2–B站、HuMo、Stand-In视觉生成框架、Youtu-GraphRAG、MobileLLM-R1–Meta、PP-OCRv5
279 10
AI Compass前沿速览:IndexTTS2–B站、HuMo、Stand-In视觉生成框架、Youtu-GraphRAG、MobileLLM-R1–Meta、PP-OCRv5
|
2月前
|
人工智能 数据可视化 前端开发
AI Ping:精准可靠的大模型服务性能评测平台
AI Ping是清华系团队推出的“大模型服务评测平台”,被誉为“AI界的大众点评”。汇聚230+模型服务,7×24小时监测性能数据,以吞吐量、延迟等硬指标助力开发者科学选型。界面简洁,数据可视化强,支持多模型对比,横向对标国内外主流平台,为AI应用落地提供权威参考。
552 3
|
3月前
|
人工智能 编解码 安全
阿里云服务器上新,第9代AMD企业级实例g9ae,提升企业AI业务创新与性能突破
近日,阿里云推出的服务器ECS第9代AMD企业级实例-g9ae实例已开启邀测阶段,g9ae实例基于CIPU 2.0架构,搭载AMD Turin处理器,为国内首创物理核设计的“性能旗舰型”算力产品,专为AI时代企业离线数据处理打造。本文为大家介绍g9ae实例的性能及适用场景,以供了解与参考。
|
4月前
|
存储 人工智能 API
AI代理性能提升实战:LangChain+LangGraph内存管理与上下文优化完整指南
在AI代理系统开发中,上下文工程成为提升系统性能的关键技术。本文探讨了从提示工程到上下文工程的转变,强调其通过为AI系统提供背景信息和工具支持,显著提升智能化程度和实用价值。文章系统分析了上下文工程的理论基础、核心策略(如写入、选择、压缩和隔离),并结合LangChain和LangGraph工具,展示了如何实现上下文工程技术以优化AI代理性能。通过Scratchpad机制、内存管理、RAG系统集成、多代理架构及沙盒环境等技术手段,开发者可以更高效地构建高性能、可扩展的AI系统。
497 0
AI代理性能提升实战:LangChain+LangGraph内存管理与上下文优化完整指南
|
4月前
|
机器学习/深度学习 人工智能 机器人
Meta AI Research:虚拟/可穿戴/机器人三位一体的AI进化路径
本文阐述了我们对具身AI代理的研究——这些代理以视觉、虚拟或物理形式存在,使其能够与用户及环境互动。这些代理包括虚拟化身、可穿戴设备和机器人,旨在感知、学习并在其周围环境中采取行动。与非具身代理相比,这种特性使它们更接近人类的学习与环境交互方式。我们认为,世界模型的构建是具身AI代理推理与规划的核心,这使代理能够理解并预测环境、解析用户意图及社会背景,从而增强其自主完成复杂任务的能力。世界建模涵盖多模态感知的整合、通过推理进行行动规划与控制,以及记忆机制,以形成对物理世界的全面认知。除物理世界外,我们还提出需学习用户的心理世界模型,以优化人机协作。
303 3
|
1月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
397 29

热门文章

最新文章

下一篇
oss云网关配置