最强TP-Link!北大清华联手开设通用AI实验班,「顶级AI科学家」朱松纯领衔

简介: 今日消息,北大清华联手开启通用人工智能实验班,由北大人工智能研究院院长、讲席教授,清华大学基础科学讲席教授朱松纯领衔。首批北大通班同学已经开课,清华通班也已启动首批招生。

史上最强天团要强强联合搞AI?


近日,北京大学官微发布消息:北大清华要联手开启通用人工智能实验班。

80.jpg

带队的不是别人,正是去年回国的AI视觉泰斗朱松纯教授,目前他担任北大人工智能研究院院长、讲席教授,以及清华大学基础科学讲席教授。

81.jpg

据悉,首批北大通用人工智能实验班招收的26名学生来自北大元培学院,已于今年春季学期开课;清华通用人工智能实验班设在自动化系,目前已启动首批招生,计划招生30人。

北大清华,最强联合,会擦出什么样的AI火花?


清华北大都要「抢」的朱松纯:三次问鼎计算机视觉最高奖


4月25日,北京大学校长郝平在庆祝清华大学建校110周年大会上的致辞中提到,两校最近联手建立通用人工智能实验班,均由朱松纯教授领衔。


北大通班设在元培学院,已于今年春季学期开课;清华通班设在自动化系,目前已开始招生。

82.jpg

大家都对此信心满满,除了北大清华的金字招牌,带队者朱松纯更是最强的保障,那么松纯是谁?

83.jpg


朱松纯于1996年获哈佛大学计算机博士学位,师从国际数学大师大卫·曼福德教授,在国际顶级期刊和会议上发表论文300余篇,并三次问鼎计算机视觉领域国际最高奖项——马尔奖。

 

他对计算机视觉有着自己独到的看法,在认知科学领域,如视觉常识推理、场景理解等领域做出了重要贡献。


去年回国时曾引起火热讨论,与国内的热烈欢迎。


而朱松纯本人也最信奉一句话,「一个民族如果忘记了历史, 他也注定将失去未来」。


这句话,对计算机视觉来说,也是同样发人深省。

84.jpg

他提到,现在很多新发表的视觉的论文,很少有文章能够引用到 5 年之前的文献,都是引用近两年arxiv上的文章,和一些Benchmarks去比。

 

很少有人认真去看 10 年前,20 年前,甚至 30 年前的论文,而当时的一些思想和框架性的东西,对现在的研究仍有重要的意义,大家几乎都用同样的方法在比小数点后面的精度。

 

大家都相当短视,只关注这几年的历史和流行的方法,根本无法传承这个学科。特别是等当前这一波方法退潮之后,这批人就会慢慢失去根基和源创力。

 

谈到自己的学术生涯,他认为David Marr 对他影响最为深远。

 

60 年代开始的时候大家已经很多人研究视觉神经生理学、心理学问题,也有人做一些边缘检测的工作。但是,计算机视觉到底要解决哪些问题?如何实现?大家莫衷一是,谈不清楚。


David Marr 分出了三个层次来解决这个问题,分别是计算(其实应该说成是表达)、算法、和实现。

 

首先,在表达的层次, 如何把它写成一个数学问题。任务是什么?输出是什么?这是独立于解决问题的方法的。

 

其次,对这个数学问题去求解时,可以选择不同的算法, 可以并行或者串行。

 

再次,一个算法如何在硬件上实现, 可以用 CPU,DSP, 或者神经网络来实现。

85.jpg

除此之外,David Marr 还理清了视觉到底要计算什么。


Marr 提出了一个系列的表达,从primal sketch(首要简约图), 到 2 ½ D sketch(深度简约图), 到 3D sketch。


这里面还包含了纹理、立体视觉、运动分析、表面形状等等。Marr认为,视觉计算不是单纯去求一个解,而是一个连续不断的计算过程,越看、越琢磨,可能得到的理解就越多。

 

值得一提的是,Marr 在1978 年冬诊断得了急性白血病,在得知来日无多后,Marr就赶紧整理了一本书《视觉:从计算的视角研究人的视觉信息表达与处理》,去世时年仅35岁。


86.jpg
朱松纯和同事在这本书上花了8年时间,把 Marr 提出的早期视觉概念, 包括纹理 、图像基元以及原始简约图等转换成了一个统一的数理模型。

 

从此,视觉就可以从纯粹的理论、计算的角度来研究了。

 

除了视觉的统计建模和计算理论,朱松纯还实现了图像与场景的解译(parsing)计算框架, 扩展了模式识别创始人傅京孙先生的句法模式识别理论。

 


87.png自2010年以来,朱松纯将计算机视觉与认知科学、自然语言理解、机器人等学科结合,探索他所称的「人工智能的暗物质」——占95%的、无法通过感知输入观测到的智能。

 

现在,朱松纯团队构建了一个大规模、物理逼真的VR / AR环境,用于训练和测试负责执行大量日常任务的自主AI智能体。


这些智能体可以整合视觉,语言,认知,机器学习和机器人技术等领域的能力,在此过程中发展物理常识和社会常识,并使用认知架构与人类进行交流。

 

熟悉朱松纯教授的人,对他严谨的治学精神,也从不吝惜赞美之词。


为什么要培养通用人工智能人才?


「人工智能是1956年开启的一门新兴学科,当时的目标就是通用人工智能。人们希望研究出种种智能体(AI Agents),它可以是虚拟的人物,也可以是物理的机器人,这个智能体需要有自主的感知、认知、决策、学习、执行以及社会协作的能力,它同时还要符合我们人类的情感、伦理和道德观念等,这就是通用人工智能。」朱松纯介绍说。


朱松纯曾表达过,人工智能系统往往由三个要素决定:第一是构架,也就是智能;第二是环境数据;第三是任务。


88.jpg

而这里又涉及到了三个层次的解法,第一个层次的解法其实就是目前火爆的大数据+深度学习;第二种层次的解法是任务理解;第三层次的解法是物理推理与人类的功利价值选择。


他认为,真正要做到以任务为中心,还要做一个统一的系统,融通六大领域,即计算机视觉、认知科学、语言对话、机器学习、机器人学习等。


而通用人工智能是未来10至20年国际人工智能研究的前沿和竞争的焦点。朱松纯强调了通用人工智能领域的重要战略意义:「从国家安全、经济发展方面来看,我认为这是一个极为重大的领域,也是中国参与国际竞争的必争之地,是一个主战场。」


朱松纯这次回国,将为国内人工智能尤其是通用人工智能的发展,带来强劲动力。他也离「人工智能大一统理论」的梦想上更近了一步。

相关文章
|
6月前
|
人工智能 Devops
AI 应用 DevOps 新体验--实验小结
AI 应用 DevOps 新体验--实验小结
139 0
|
7月前
|
人工智能 安全 网络安全
欧盟《人工智能法案》对通用AI模型的监管要求
【2月更文挑战第24天】欧盟《人工智能法案》对通用AI模型的监管要求
161 2
欧盟《人工智能法案》对通用AI模型的监管要求
|
2天前
|
JSON 分布式计算 数据处理
加速数据处理与AI开发的利器:阿里云MaxFrame实验评测
随着数据量的爆炸式增长,传统数据分析方法逐渐显现出局限性。Python作为数据科学领域的主流语言,因其简洁易用和丰富的库支持备受青睐。阿里云推出的MaxFrame是一个专为Python开发者设计的分布式计算框架,旨在充分利用MaxCompute的强大能力,提供高效、灵活且易于使用的工具,应对大规模数据处理需求。MaxFrame不仅继承了Pandas等流行数据处理库的友好接口,还通过集成先进的分布式计算技术,显著提升了数据处理的速度和效率。
|
2月前
|
人工智能 安全 决策智能
OpenAI推出实验性“Swarm”框架,引发关于AI驱动自动化的争论
OpenAI推出实验性“Swarm”框架,引发关于AI驱动自动化的争论
|
1月前
|
人工智能
AI科学家太多,谁靠谱一试便知!普林斯顿新基准CORE-Bench:最强模型仅有21%准确率
【10月更文挑战第21天】普林斯顿大学研究人员提出了CORE-Bench,一个基于计算可重复性的AI代理基准,涵盖计算机科学、社会科学和医学领域的270个任务。该基准旨在评估AI代理在科学研究中的准确性,具有多样性、难度级别和现实相关性等特点,有助于推动AI代理的发展并提高计算可重复性。
54 4
|
2月前
|
人工智能 自然语言处理
召唤100多位学者打分,斯坦福新研究:AI科学家创新确实强
【10月更文挑战第6天】斯坦福大学最新研究评估了大型语言模型(LLMs)在生成新颖研究想法方面的能力,通过100多位NLP专家盲评LLMs与人类研究人员提出的想法。结果显示,LLMs在新颖性方面超越人类(p < 0.05),但在可行性上略逊一筹。研究揭示了LLMs作为科研工具的潜力与挑战,并提出了进一步验证其实际效果的设计。论文详见:https://arxiv.org/abs/2409.04109。
48 6
|
2月前
|
人工智能
用AI人模拟社会学实验,居然成功了?斯坦福、NYU用GPT-4模仿人类,准确度惊人!
斯坦福大学和纽约大学的研究团队利用GPT-4模型成功模拟了人类在社交互动中的行为模式,实验结果显示AI能以惊人准确度模仿人类对话,甚至在在线论坛和社交媒体上与真人难以区分。这一突破不仅展示了AI在社会学研究中的巨大潜力,还引发了对AI伦理和透明度的深入探讨。尽管存在一些局限性和挑战,这项研究为未来社会学实验提供了新工具和方法。[论文地址:https://docsend.com/view/qeeccuggec56k9hd]
78 2
|
2月前
|
机器学习/深度学习 存储 人工智能
2024年诺贝尔奖:AI科学家的辉煌时刻 | AI大咖说
在今年的诺贝尔物理学奖和化学奖颁奖典礼上,AI科学家分别摘得了这两项殊荣,这无疑为AI技术的发展和应用注入了新的动力【10月更文挑战第5天】
85 0
|
3月前
|
人工智能 数据处理
Nature:AI让抄袭问题更加复杂,科学家该如何应对?
【9月更文挑战第16天】《自然》杂志一篇文章指出,AI在科研领域的应用日益增长,带来了加速数据处理、提升计算效率等益处,同时也引发了对科学标准、数据偏见及研究诚信的挑战。一项针对1600多名研究人员的调查显示,超半数认为未来十年AI将成为其研究领域不可或缺的工具。AI能够显著提升科研效率,但也可能增加对模式识别的依赖,加剧数据偏见,并引发研究不可重复性等问题。尤其是大型语言模型如ChatGPT,虽有助于改进论文语法和翻译,但也可能传播错误信息。此外,部分科学家面临计算资源和高质量数据不足等使用障碍。
52 3
|
5月前
|
Web App开发 机器学习/深度学习 人工智能
AI Agent满级进化!骑马种田、办公修图,样样精通,昆仑万维等发布通用Agent新框架
【7月更文挑战第23天】AI Agent技术迎来突破,昆仑万维联合顶尖学府发布Cradle框架,赋能智能体通用控制能力。Cradle结合大型语言模型与六大核心模块,实现跨场景灵活操控,从游戏到办公软件,无师自通。实验验证其在《荒野大镖客2》等游戏及Chrome、Outlook上的卓越表现。框架开源,促进AI社区进步,但仍需面对实际应用的挑战与安全性考量。[论文](https://arxiv.org/abs/2403.03186)详述创新细节。
125 3