Java架构师之面试题

本文涉及的产品
Elasticsearch Serverless通用抵扣包,测试体验金 200元
简介: Elasticsearch

11、客户端在和集群连接时,如何选择特定的节点执行请求的?

TransportClient 利用 transport 模块远程连接一个 elasticsearch 集群。它并 不加入到集群中,只是简单的获得一个或者多个初始化的 transport 地址,并以 轮 询 的方式与这些地址进行通信。

12、详细描述一下 Elasticsearch 索引文档的过程。

协调节点默认使用文档 ID 参与计算(也支持通过 routing),以便为路由提供合 适的分片。

shard = hash(document_id) % (num_of_primary_shards)

1、当分片所在的节点接收到来自协调节点的请求后,会将请求写入到 Memory Buffer,然后定时(默认是每隔 1 秒)写入到 Filesystem Cache,这个从 Momery Buffer 到 Filesystem Cache 的过程就叫做 refresh;

2、当然在某些情况下,存在 Momery Buffer 和 Filesystem Cache 的数据可能会 丢失,ES 是通过 translog 的机制来保证数据的可靠性的。其实现机制是接收到请 求后,同时也会写入到 translog 中,当 Filesystem cache 中的数据写入到磁盘中 时,才会清除掉,这个过程叫做 flush;

3、在 flush 过程中,内存中的缓冲将被清除,内容被写入一个新段,段的 fsync 将创建一个新的提交点,并将内容刷新到磁盘,旧的 translog 将被删除并开始一 个新的 translog。

4、flush 触发的时机是定时触发(默认 30 分钟)或者 translog 变得太大(默认 为 512M)时;

image.png

补充:关于 Lucene 的 Segement:

1、Lucene 索引是由多个段组成,段本身是一个功能齐全的倒排索引。

2、段是不可变的,允许 Lucene 将新的文档增量地添加到索引中,而不用从头重 建索引。

3、对于每一个搜索请求而言,索引中的所有段都会被搜索,并且每个段会消耗 CPU 的时钟周、文件句柄和内存。这意味着段的数量越多,搜索性能会越低。

4、为了解决这个问题,Elasticsearch 会合并小段到一个较大的段,提交新的合并 段到磁盘,并删除那些旧的小段。

13、详细描述一下 Elasticsearch 更新和删除文档的过程。

1、删除和更新也都是写操作,但是 Elasticsearch 中的文档是不可变的,因此不 能被删除或者改动以展示其变更;

2、磁盘上的每个段都有一个相应的.del 文件。当删除请求发送后,文档并没有真 的被删除,而是在.del 文件中被标记为删除。该文档依然能匹配查询,但是会在 结果中被过滤掉。当段合并时,在.del 文件中被标记为删除的文档将不会被写入 新段。

3、在新的文档被创建时,Elasticsearch 会为该文档指定一个版本号,当执行更新 时,旧版本的文档在.del 文件中被标记为删除,新版本的文档被索引到一个新段。 旧版本的文档依然能匹配查询,但是会在结果中被过滤掉。

14、详细描述一下 Elasticsearch 搜索的过程。

1、搜索被执行成一个两阶段过程,我们称之为 Query Then Fetch;

2、在初始查询阶段时,查询会广播到索引中每一个分片拷贝(主分片或者副本分 片)。 每个分片在本地执行搜索并构建一个匹配文档的大小为 from + size 的 优先队列。 PS:在搜索的时候是会查询 Filesystem Cache 的,但是有部分数据还在 Memory Buffer,所以搜索是近实时的。

3、每个分片返回各自优先队列中 所有文档的 ID 和排序值 给协调节点,它合并 这些值到自己的优先队列中来产生一个全局排序后的结果列表。

4、接下来就是 取回阶段,协调节点辨别出哪些文档需要被取回并向相关的分片 提交多个 GET 请求。每个分片加载并 丰富 文档,如果有需要的话,接着返回 文档给协调节点。一旦所有的文档都被取回了,协调节点返回结果给客户端。

5、补充:Query Then Fetch 的搜索类型在文档相关性打分的时候参考的是本分 片的数据,这样在文档数量较少的时候可能不够准确,DFS Query Then Fetch 增 加了一个预查询的处理,询问 Term 和 Document frequency,这个评分更准确, 但是性能会变差。

image.png

15、在 Elasticsearch 中,是怎么根据一个词找到对应的倒排索 引的?

SEE:

[ Lucene 的索引文件格式(1)]    https://www.cnblogs.com/forfuture1978/archive/2009/12/14/1623597.html

[Lucene 的索引文件格式(2)]    https://www.cnblogs.com/forfuture1978/archive/2009/12/14/1623599.html

16、Elasticsearch 在部署时,对 Linux 的设置有哪些优化方 法?

1、64 GB 内存的机器是非常理想的, 但是 32 GB 和 16 GB 机器也是很常见的。 少于 8 GB 会适得其反。

2、如果你要在更快的 CPUs 和更多的核心之间选择,选择更多的核心更好。多 个内核提供的额外并发远胜过稍微快一点点的时钟频率。 3、如果你负担得起 SSD,它将远远超出任何旋转介质。 基于 SSD 的节点,查 询和索引性能都有提升。如果你负担得起,SSD 是一个好的选择。

4、即使数据中心们近在咫尺,也要避免集群跨越多个数据中心。绝对要避免集群 跨越大的地理距离。

5、请确保运行你应用程序的 JVM 和服务器的 JVM 是完全一样的。 在 Elasticsearch 的几个地方,使用 Java 的本地序列化。

6、通过设置 gateway.recover_after_nodes、gateway.expected_nodes、 gateway.recover_after_time 可以在集群重启的时候避免过多的分片交换,这可 能会让数据恢复从数个小时缩短为几秒钟。

7、Elasticsearch 默认被配置为使用单播发现,以防止节点无意中加入集群。只 有在同一台机器上运行的节点才会自动组成集群。最好使用单播代替组播。

8、不要随意修改垃圾回收器(CMS)和各个线程池的大小。

9、把你的内存的(少于)一半给 Lucene(但不要超过 32 GB!),通过 ES_HEAP_SIZE 环境变量设置。

10、内存交换到磁盘对服务器性能来说是致命的。如果内存交换到磁盘上,一个 100 微秒的操作可能变成 10 毫秒。 再想想那么多 10 微秒的操作时延累加起 来。 不难看出 swapping 对于性能是多么可怕。

11、Lucene 使用了大量 的文件。同时,Elasticsearch 在节点和 HTTP 客户端 之间进行通信也使用了大量的套接字。 所有这一切都需要足够的文件描述符。你 应该增加你的文件描述符,设置一个很大的值,如 64,000。

补充:索引阶段性能提升方法

1、使用批量请求并调整其大小:每次批量数据 5–15 MB 大是个不错的起始点。

2、存储:使用 SSD

3、段和合并:Elasticsearch 默认值是 20 MB/s,对机械磁盘应该是个不错的设 置。如果你用的是 SSD,可以考虑提高到 100–200 MB/s。如果你在做批量导入, 完全不在意搜索,你可以彻底关掉合并限流。另外还可以增加index.translog.flush_threshold_size 设置,从默认的 512 MB 到更大一些的 值,比如 1 GB,这可以在一次清空触发的时候在事务日志里积累出更大的段。

4、如果你的搜索结果不需要近实时的准确度,考虑把每个索引的 index.refresh_interval 改到 30s。

5、如果你在做大批量导入,考虑通过设置 index.number_of_replicas: 0 关闭副 本。

17、对于 GC 方面,在使用 Elasticsearch 时要注意什么?

1、SEE:https://elasticsearch.cn/article/32

2、倒排词典的索引需要常驻内存,无法 GC,需要监控 data node 上 segment memory 增长趋势。

3、各类缓存,field cache, filter cache, indexing cache, bulk queue 等等,要 设置合理的大小,并且要应该根据最坏的情况来看 heap 是否够用,也就是各类缓 存全部占满的时候,还有 heap 空间可以分配给其他任务吗?避免采用 clear cache 等“自欺欺人”的方式来释放内存。

4、避免返回大量结果集的搜索与聚合。确实需要大量拉取数据的场景,可以采用 scan & scroll api 来实现。

5、cluster stats 驻留内存并无法水平扩展,超大规模集群可以考虑分拆成多个集 群通过 tribe node 连接。

6、想知道 heap 够不够,必须结合实际应用场景,并对集群的 heap 使用情况做 持续的监控。

18、Elasticsearch 对于大数据量(上亿量级)的聚合如何实现?

Elasticsearch 提供的首个近似聚合是 cardinality 度量。它提供一个字段的基数, 即该字段的 distinct 或者 unique 值的数目。它是基于 HLL 算法的。HLL 会先对 我们的输入作哈希运算,然后根据哈希运算的结果中的 bits 做概率估算从而得到 基数。其特点是:可配置的精度,用来控制内存的使用(更精确 = 更多内存); 小的数据集精度是非常高的;我们可以通过配置参数,来设置去重需要的固定内 存使用量。无论数千还是数十亿的唯一值,内存使用量只与你配置的精确度相关。

19、在并发情况下,Elasticsearch 如果保证读写一致?

1、可以通过版本号使用乐观并发控制,以确保新版本不会被旧版本覆盖,由应用 层来处理具体的冲突;

2、另外对于写操作,一致性级别支持 quorum/one/all,默认为 quorum,即只 有当大多数分片可用时才允许写操作。但即使大多数可用,也可能存在因为网络 等原因导致写入副本失败,这样该副本被认为故障,分片将会在一个不同的节点 上重建。

3、对于读操作,可以设置 replication 为 sync(默认),这使得操作在主分片和副 本分片都完成后才会返回;如果设置 replication 为 async 时,也可以通过设置搜 索请求参数_preference 为 primary 来查询主分片,确保文档是最新版本。

20、如何监控 Elasticsearch 集群状态?

Marvel 让你可以很简单的通过 Kibana 监控 Elasticsearch。你可以实时查看你 的集群健康状态和性能,也可以分析过去的集群、索引和节点指标。

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
6天前
|
缓存 Java API
Java 面试实操指南与最新技术结合的实战攻略
本指南涵盖Java 17+新特性、Spring Boot 3微服务、响应式编程、容器化部署与数据缓存实操,结合代码案例解析高频面试技术点,助你掌握最新Java技术栈,提升实战能力,轻松应对Java中高级岗位面试。
32 0
|
23天前
|
缓存 Java 关系型数据库
2025 年最新华为 Java 面试题及答案,全方位打造面试宝典
Java面试高频考点与实践指南(150字摘要) 本文系统梳理了Java面试核心考点,包括Java基础(数据类型、面向对象特性、常用类使用)、并发编程(线程机制、锁原理、并发容器)、JVM(内存模型、GC算法、类加载机制)、Spring框架(IoC/AOP、Bean生命周期、事务管理)、数据库(MySQL引擎、事务隔离、索引优化)及分布式(CAP理论、ID生成、Redis缓存)。同时提供华为级实战代码,涵盖Spring Cloud Alibaba微服务、Sentinel限流、Seata分布式事务,以及完整的D
52 0
|
23天前
|
算法 架构师 Java
Java 开发岗及 java 架构师百度校招历年经典面试题汇总
以下是百度校招Java岗位面试题精选摘要(150字): Java开发岗重点关注集合类、并发和系统设计。HashMap线程安全可通过Collections.synchronizedMap()或ConcurrentHashMap实现,后者采用分段锁提升并发性能。负载均衡算法包括轮询、加权轮询和最少连接数,一致性哈希可均匀分布请求。Redis持久化有RDB(快照恢复快)和AOF(日志更安全)两种方式。架构师岗涉及JMM内存模型、happens-before原则和无锁数据结构(基于CAS)。
36 5
|
26天前
|
Java API 微服务
2025 年 Java 校招面试全攻略:从面试心得看 Java 岗位求职技巧
《2025年Java校招最新技术要点与实操指南》 本文梳理了2025年Java校招的核心技术栈,并提供了可直接运行的代码实例。重点技术包括: Java 17+新特性(Record类、Sealed类等) Spring Boot 3+WebFlux响应式编程 微服务架构与Spring Cloud组件 Docker容器化部署 Redis缓存集成 OpenAI API调用 通过实际代码演示了如何应用这些技术,如Java 17的Record类简化POJO、WebFlux构建响应式API、Docker容器化部署。
51 5
|
24天前
|
安全 Java API
2025 年 Java 校招面试常见问题及详细答案汇总
本资料涵盖Java校招常见面试题,包括Java基础、并发编程、JVM、Spring框架、分布式与微服务等核心知识点,并提供详细解析与实操代码,助力2025校招备战。
65 1
|
24天前
|
算法 Java 微服务
2025 年 Java 面试宝典社招春招秋招实操全方位攻略
2025年Java面试宝典涵盖核心技术及最新趋势,分为四大板块:1. Java基础:深入数据类型、多态等特性,结合学生信息管理等实例;2. JVM核心:解析内存模型与GC算法,附多线程转账等场景应用;3. 高并发方案:详解synchronized与线程池配置,提供Web服务器优化案例;4. Spring生态:剖析IoC/AOP原理,演示微服务架构实现。特别新增Java 17+特性实操,包括Record类、密封接口等语法糖,整合Spring Boot 3、响应式编程及云原生技术,通过订单状态机、API网关配置。
83 1
|
26天前
|
缓存 算法 NoSQL
校招 Java 面试高频常见知识点深度解析与实战案例详细分享
《2025校招Java面试核心指南》总结了Java技术栈的最新考点,涵盖基础语法、并发编程和云原生技术三大维度: 现代Java特性:重点解析Java 17密封类、Record类型及响应式Stream API,通过电商案例演示函数式数据处理 并发革命:对比传统线程池与Java 21虚拟线程,详解Reactor模式在秒杀系统中的应用及背压机制 云原生实践:提供Spring Boot容器化部署方案,分析Spring WebFlux响应式编程和Redis Cluster缓存策略。
32 0
|
消息中间件 架构师 算法
java架构师面试题及答案
java架构师面试题及答案
|
设计模式 消息中间件 缓存
2024年Java架构师面试宝典 图文并茂 10G面试题 请收藏
2024年Java架构师面试宝典 图文并茂 10G面试题 请收藏
1388 1
|
架构师 网络协议 Java
严禁外传!字节跳动2023春招Java岗位架构师面试题(暂定版)发布
说来说去废话也是那么多,今天小编实在是不想写前言了“原谅我一次”让我任性一回!
221 0

热门文章

最新文章

  • 1
    云计算运维工程师面试技巧
    902
  • 2
    【机器学习】面试问答:PCA算法介绍?PCA算法过程?PCA为什么要中心化处理?PCA为什么要做正交变化?PCA与线性判别分析LDA降维的区别?
    317
  • 3
    【机器学习】面试问答:决策树如何进行剪枝?剪枝的方法有哪些?
    234
  • 4
    【机器学习】SVM面试题:简单介绍一下SVM?支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择?SVM为什么采用间隔最大化?为什么要将求解SVM的原始问题转换为其对偶问题?
    211
  • 5
    【深度学习】Pytorch面试题:什么是 PyTorch?PyTorch 的基本要素是什么?Conv1d、Conv2d 和 Conv3d 有什么区别?
    733
  • 6
    【深度学习】TensorFlow面试题:什么是TensorFlow?你对张量了解多少?TensorFlow有什么优势?TensorFlow比PyTorch有什么不同?该如何选择?
    563
  • 7
    【机器学习】面试题:LSTM长短期记忆网络的理解?LSTM是怎么解决梯度消失的问题的?还有哪些其它的解决梯度消失或梯度爆炸的方法?
    503
  • 8
    【数据挖掘】XGBoost面试题:与GBDT的区别?为什么使用泰勒二阶展开?为什么可以并行训练?为什么快?防止过拟合的方法?如何处理缺失值?
    561
  • 9
    【数据挖掘】 GBDT面试题:其中基分类器CART回归树,节点的分裂标准是什么?与RF的区别?与XGB的区别?
    188
  • 10
    【机器学习】过拟合和欠拟合怎么判断,如何解决?(面试回答)
    1007
  • AI助理

    你好,我是AI助理

    可以解答问题、推荐解决方案等

    登录插画

    登录以查看您的控制台资源

    管理云资源
    状态一览
    快捷访问