Apache Flink不止于计算,数仓架构或兴起新一轮变革

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: Apache Flink不止于计算,数仓架构或兴起新一轮变革

image.png

维基百科的“Apache Flink”词条下,有这么一句描述: “Flink  并不提供自己的数据存储系统,但为 Amazon Kinesis、Apache Kafka、Alluxio、HDFS、Apache  Cassandra 和 Elasticsearch 等系统提供了数据源和接收器”,很快,这句话的前半句或许将不再适用。

2021 年初,在 InfoQ 编辑部策划的全年技术趋势展望中,我们提到大数据领域将加速拥抱“融合”(或“一体化”)演进的新方向。本质是为了降低大数据分析的技术复杂度和成本,同时满足对性能和易用性的更高要求。如今,我们看到流行的流处理引擎 Apache Flink(下称 Flink)沿着这个趋势又迈出了新的一步。

1  月 8 日上午,Flink Forward Asia 2021 以线上会议的形式拉开帷幕。今年是 Flink Forward  Asia(下文简称 FFA)落地中国的第四个年头,也是 Flink 成为 Apache  软件基金会顶级项目的第七年。伴随着实时化浪潮的发展和深化,Flink 已逐步演进为流处理的领军角色和事实标准。


回顾其演进历程,Flink 一方面持续优化其流计算核心能力,不断提高整个行业的流计算处理标准,另一方面沿着流批一体的思路逐步推进架构改造和应用场景落地。但在这些之外,Flink 长期发展还需要一个新的突破口。

在  Flink Forward Asia 2021 的主题演讲中,Apache Flink  中文社区发起人、阿里巴巴开源大数据平台负责人王峰(花名莫问)重点介绍了 Flink 在流批一体架构演进和落地方面的最新进展,并提出了 Flink  下一步的发展方向——流式数仓(Streaming Warehouse,简称 Streamhouse)。正如主题演讲标题“Flink Next,  Beyond Stream Processing”所言,Flink 要从 Stream Processing 走向 Streaming  Warehouse 去覆盖更大的场景,帮助开发者解决更多问题。而要实现流式数仓的目标,就意味着 Flink  社区要拓展适合流批一体的数据存储,这是 Flink 今年在技术方面的一个创新,社区相关工作已经在 10 月份启动,接下来这会作为 Flink  社区未来一年的一个重点方向来推进。

那么,如何理解流式数仓?它想解决现有数据架构的哪些问题?为什么 Flink 要选择这个方向?流式数仓的实现路径会是怎样的?带着这些问题,InfoQ 独家专访了莫问,进一步了解流式数仓背后的思考路径。

Flink  这几年一直在反复强调流批一体,即:使用同一套  API、同一套开发范式来实现大数据的流计算和批计算,进而保证处理过程与结果的一致性。莫问表示,流批一体更多是一种技术理念和能力,它本身不解决用户的任何问题,只有当它真正落到实际业务场景中,才能够体现出开发效率和运行效率上的价值。而流式数仓可以理解为流批一体大方向下对落地解决方案的思考。

image.png

                                                                                                     

流批一体的两个应用场景

在去年的 FFA 上,我们已经看到 Flink 流批一体在天猫双十一的落地应用,那是阿里首次在核心数据业务上真正规模化落地流批一体。如今一年过去了,Flink 流批一体在技术架构演进和落地应用两方面都有了新进展。
技术演进层面,Flink  流批一体 API 和架构改造已经完成,在原先的流批一体 SQL 基础上,进一步整合了 DataStream 和 DataSet 两套  API,实现了完整的 Java 语义层面的流批一体 API,架构上做到了一套代码可同时承接流存储与批存储。

image.gif

image.png在今年 10 月发布的 Flink 1.14 版本中,已经可以支持在同一个应用中混合使用有界流和无界流:Flink 现在支持对部分运行、部分结束的应用(部分算子已处理到有界输入数据流的末端)做 Checkpoint。此外,Flink 在处理到有界数据流末端时会触发最终 Checkpoint,以确保所有计算结果顺利提交到 Sink。
而批执行模式现在支持在同一应用中混合使用 DataStream API 和 SQL/Table API(此前仅支持单独使用 DataStream API 或 SQL/Table API)。
此外,Flink 更新了统一的 Source 和 Sink API,开始围绕统一的 API 整合连接器生态。新增的混合 Source 可在多个存储系统间过渡,实现诸如先从 Amazon S3 中读取旧的数据再无缝切换到 Apache Kafka 这样的操作。
在落地应用层面,也出现了两个比较重要的应用场景。
第一个是基于 Flink CDC 的全增量一体化数据集成。

image.png


数据集成、不同数据源之间的数据同步对于很多团队来说是刚需,但传统方案往往复杂度太高且时效性不好。传统的数据集成方案通常是离线数据集成和实时数据集成分别采用两套技术栈,其中涉及很多数据同步工具,比如  Sqoop、DataX 等,这些工具要么只能做全量要么只能做增量,开发者需要自己控制全增量的切换,配合起来比较复杂。
基于 Flink 的流批一体能力和 Flink CDC,只需要写一条 SQL,就可以做到先全量同步历史数据,再自动断点续传增量数据,实现一站式数据集成。全程无需用户判断和干预,Flink 能自动完成批流之间的切换并保证数据的一致性。
Flink CDC Connectors 作为一个独立的开源项目,从去年 7 月份开源以来,一直保持相当高速的发展,平均两个月一个版本。目前 Flink CDC 版本已经更新到 2.1 版本,并完成了很多主流数据库的适配,比如  MySQL、PostgreSQL、MongoDB、Oracle 等,更多数据库如 TiDB、DB2  等的对接工作也在进行中。可以看到已经有越来越多企业在自己的业务场景中使用 Flink CDC,InfoQ 前不久采访过的 XTransfer  就是其中之一。
第二个应用场景则是大数据领域最核心的数仓场景。
目前主流的实时离线一体化数仓架构通常如下图所示。

image.gif

image.png绝大部分场景都会使用  Flink+Kafka  来做实时数据流的处理,也就是实时数仓的部分,并将最终分析结果写入到一个在线服务层,用来展示或做进一步的分析。同时后台一定会有一个异步的离线数仓架构对实时数据作补充,每天定期运行大规模批量甚至是全量分析,或进行历史数据的定期修正等。
但这个经典架构存在一些显而易见的问题:首先,实时链路和离线链路使用的技术栈不同,必定会有两套   API,那么就需要两套开发流程,增加了开发成本;其次,实时离线技术栈不同,无法保证数据口径的一致性;再次,实时链路的中间队列数据不利于分析。如果用户想要分析实时链路中一个明细层的数据,其实非常不方便,很多用户目前采用的办法可能是先把这个明细层中的数据导出来,比如导到  Hive 做离线分析,但这个时效性会大幅下降,或者为了加速查询,把数据导入到其他 OLAP  引擎中,但这又会增加系统复杂度,且数据一致性同样很难保证。
Flink  流批一体的理念可以在上述场景下得到充分应用。在莫问看来,Flink  可以让当前业界主流数仓架构再进阶一层,实现真正端到端全链路的实时化分析能力,即:当数据在源头发生变化时就能捕捉到这一变化,并支持对它做逐层分析,让所有数据实时流动起来,并且对所有流动中的数据都可以实时查询。再借助  Flink 完备的流批一体能力,使用同一套 API  就可以同时支持灵活的离线分析。这样一来,实时、离线以及交互式查询分析、短查询分析等,就可以统一成一整套解决方案,成为理想中的“流式数仓(Streaming  Warehouse)”。

理解流式数仓

image.png

image.gif
流式数仓(Streaming  Warehouse)更准确地说,其实是“make data warehouse  streaming”,就是让整个数仓的数据全实时地流动起来,且是以纯流的方式而不是微批(mini-batch)的方式流动。目标是实现一个具备端到端实时性的纯流服务(Streaming  Service),用一套 API 分析所有流动中的数据,当源头数据发生变化,比如捕捉到在线服务的 Log 或数据库的 Binlog  以后,就按照提前定义好的 Query  逻辑或数据处理逻辑,对数据进行分析,分析后的数据落到数仓的某一个分层,再从第一个分层向下一个分层流动,然后数仓所有分层会全部流动起来,最终流到一个在线系统里,用户可以看到整个数仓的全实时流动效果。在这个过程中,数据是主动的,而查询是被动的,分析由数据的变化来驱动。同时在垂直方向上,对每一个数据明细层,用户都可以执行  Query 进行主动查询,并且能实时获得查询结果。此外,它还能兼容离线分析场景,API 依然是同一套,实现真正的一体化。
目前业界还没有这样一个端到端全流式链路的成熟解决方案,虽然有纯流的方案和纯交互式查询的方案,但需要用户自己把两套方案加起来,必然会增加系统的复杂性,如果要再把离线数仓方案也加进来,系统复杂性问题就更大了。流式数仓要做的是在实现高时效性的同时,不进一步提高系统复杂性,让整个架构对于开发和运维人员来说都是非常简洁的。
当然,流式数仓是终态,要达成这个目标,Flink  需要一个配套的流批一体存储支持。其实 Flink 本身有内置的分布式 RocksDB 作为 State  存储,但这个存储只能解决任务内部流数据状态的存储问题。流式数仓需要一个计算任务之间的表存储服务:第一个任务将数据写进去,第二个任务就能从它实时地再读出来,第三个任务还能对它执行用户的  Query 分析。因此 Flink 需要再扩展出一个跟自身理念配套的存储,从 State 存储走出来,继续向外走。为此,Flink  社区提出了新的 Dynamic Table Storage,即具备流表二象性的存储方案。
image.png

流批一体存储:Flink Dynamic Table

Flink  Dynamic Table(社区讨论详见 FLIP-188)可以理解为一套流批一体的存储,并无缝对接 Flink SQL。原来 Flink  只能读写像 Kafka、HBase 这样的外部表,现在用同一套 Flink SQL 语法就可以像原来创建源表和目标表一样,创建一个  Dynamic Table。流式数仓的分层数据可以全部放到 Flink Dynamic Table 中,通过 Flink SQL  就能实时地串联起整个数仓的分层,既可以对 Dynamic Table 中不同明细层的数据做实时查询和分析,也可以对不同分层做批量 ETL 处理。
从数据结构上看,Dynamic  Table 内部有两个核心存储组件,分别是 File Store 和 Log Store。顾名思义,Flie Store 存储 Table  的文件存储形式,采用经典的 LSM 架构,支持流式的更新、删除、增加等;同时,采用开放的列存结构,支持压缩等优化;它对应 Flink SQL  的批模式,支持全量批式读取。而 Log Store 存储的是 Table 的操作记录,是一个不可变更序列,对应 Flink SQL  的流模式,可以通过 Flink SQL 订阅 Dynamic Table 的增量变化做实时分析,目前支持插件化实现。
image.png
对 Flie Store 的写入被封装在内置的 Sink 中,屏蔽了写入的复杂性。同时 Flink 的 Checkpoint 机制和 Exactly Once 机制能够保证数据的一致性。
目前  Dynamic Table 第一个阶段的实现方案已经完成,社区也在围绕这个方向展开更多讨论。根据社区的规划,未来的终态会实现 Dynamic  Table 的服务化,真正形成一套 Dynamic Table 的 Service,实现完全实时化的流批一体存储。同时,Flink  社区也正在讨论将 Dynamic Table 作为 Flink  独立子项目运营和发布,不排除后续将其完全独立成为流批一体通用存储项目发展。最终,利用 Flink CDC、Flink SQL、Flink  Dynamic Table 就可以构建一套完整的流式数仓,实现实时离线一体化的体验。整个流程及效果参见以下 demo 视频展示。
image.png虽然整个流程初步走通,但真正要实现全实时链路且足够稳定,社区还需要逐步提升实现方案的质量,这其中包括  Flink SQL 在 OLAP  交互式场景下的优化、动态表存储性能和一致性的优化以及构建动态表服务化能力等诸多工作。流式数仓这个方向只是刚刚启动,并有了初步尝试,在莫问看来,设计没有问题,但后续还需要解决一系列工程问题。这就像设计一个先进制程芯片或  ARM 架构,很多人都能设计出来,但在要保证良品率的前提下把芯片生产出来,其实是很难的。流式数仓会是接下来 Flink  在大数据分析场景下最重要的一个方向,社区也会在这个方向上大力投入。

Flink 不止于计算

在大数据实时化转型大趋势之下,Flink 不只能做一件事情,它还能做更多。


业界原先对于  Flink 的定位更多是一个流处理器或流计算引擎,实际并非如此。莫问表示,Flink 原生也不只是计算,大家可能狭义上认为 Flink  是计算,但广义来说,Flink 本来就有存储。“Flink 能够靠流计算冲出重围,靠的就是有状态的存储,这是相对 Storm 来说更大的优势。”
现在  Flink 希望更进一步,实现一个覆盖更大范围实时化问题的解决方案,原有的存储就不够用了。而外部的存储系统或其他引擎体系跟 Flink  的目标和特性又不完全一致,无法跟 Flink 做很好的集成。比如 Flink 跟数据湖包括 Hudi、Iceberg  都做了集成,支持实时入湖、入湖实时增量分析,但这些场景仍然无法完全发挥出 Flink 全实时的优势,因为数据湖存储格式本质还是  Mini-Batch,Flink 在其中也会退化到 Mini-Batch 模式。这不是 Flink 最希望看到或最适合 Flink  的架构,所以它自然就需要自己再拓展出一套与 Flink 流批一体理念相配套的存储系统。
在莫问看来,对于一套大数据计算分析引擎,如果没有一套与其理念配套的存储技术体系支撑,是无法提供一套极致体验的数据分析解决方案的。这就类似于,任何优秀的算法都需要有相应的数据结构与其配套,才能以最佳效率解决问题。
为什么说  Flink 做流式数仓更合适?这是由 Flink 的理念决定的,Flink 的核心理念是以 Streaming  优先来解决数据处理的问题,而要让整个数仓的数据实时流动起来,Streaming 是必不可少的。在数据都流动起来之后,集合数据的流表二象性,以及  Flink 的流批一体分析能力,就可以对流动中的任何一个环节的数据进行分析,不管是短查询的秒级分析,还是离线的 ETL 分析,Flink  都具备相应能力。莫问表示,Flink  流批一体原来受到最大的限制就是中间没有能配套的存储数据结构,会让场景不好落地,只要把存储和数据结构补上,很多流批一体的化学反应自然就会出现。
那  Flink 自建数据存储系统,是否会对大数据生态中现有的数据存储类项目带来一定的冲击呢?对此莫问解释道,Flink  社区推出新的流批一体存储技术,是为了更好地配合自身流批一体计算的需求,会保持存储和数据的开放协议、开放的 API 和  SDK,后续也有计划将此项目独立发展。此外,Flink 也依然会积极对接业界主流存储项目,保持对外生态的兼容和开放。
大数据生态不同组件之间的边界正变得越来越模糊,莫问认为,当下的趋势是从单一组件能力走向一体化解决方案。“大家其实都在顺着这个趋势走,比如你可以看到很多数据库项目,原来是  OLTP 后来加上了 OLAP,最后都叫 HTAP,实际上就是融合了行存和列存,既支持  Serving,又支持分析,都是为了给用户提供一套完整的数据分析体验。”莫问进一步补充表示:“目前很多系统都开始不断拓展边界,从实时走向离线,或从离线走向实时,相互渗透。否则,用户就需要自己手动去组合各种技术组件,还要面对各种复杂性,门槛越来越高。所以,一体化的融合趋势是非常明显的。到底谁组合谁其实没有对错,关键是能不能用一种很好的融合方式,给用户提供最好的体验。谁做到了,谁就能赢得最后的用户。社区要有生命力、持续发展,仅仅把自己最擅长的领域做到极致是不够的,还要不断基于用户需求和场景去创新和突破边界,大部分用户的需求不一定在单一能力从  95 分到 100 分的差距上。”
据莫问估计,大约还需要一年左右的时间可以形成一个相对成熟的流式数仓方案。对于已经采用  Flink 作为实时计算引擎的用户,天然就适合去尝试新的流式数仓方案,用户接口完全兼容 Flink SQL。据透露,在最新的 Flink  1.15 版本就会发出第一个 Preview 版本,正在使用 Flink 的用户都可以先试一试。莫问表示,基于 Flink  的流式数仓刚刚启动,技术方案还需要进一步迭代,距离成熟还需要一定时间打磨,希望能有更多企业和开发者带着自己的需求参与进来一起建设,这才是开源社区的价值。

结语

大数据开源生态组件众多、架构复杂度高的问题已经被诟病了很多年,如今业界似乎已经在一定程度上达成共识,即通过融合、一体化来推动数据架构往简化的方向演进,尽管不同企业有不同的说法和实现路径。
在莫问看来,开源生态百花齐放很正常,每个技术社区都有自己擅长的领域,但真正要解决业务场景问题的话,还是需要一套一站式的解决方案,才能为用户提供简单易用的体验。因此他也认同总体趋势会往整合和融合的方向走,但可能性并不唯一,未来有可能专门有一个系统来负责整合所有组件,也有可能每个系统都逐渐演变成一体化。哪一种可能性才是终局,或许只能等时间给我们答案了。

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
22天前
|
存储 机器学习/深度学习 人工智能
【AI系统】计算图优化架构
本文介绍了推理引擎转换中的图优化模块,涵盖算子融合、布局转换、算子替换及内存优化等技术,旨在提升模型推理效率。计算图优化技术通过减少计算冗余、提高计算效率和减少内存占用,显著改善模型在资源受限设备上的运行表现。文中详细探讨了离线优化模块面临的挑战及解决方案,包括结构冗余、精度冗余、算法冗余和读写冗余的处理方法。此外,文章还介绍了ONNX Runtime的图优化机制及其在实际应用中的实现,展示了如何通过图优化提高模型推理性能的具体示例。
52 4
【AI系统】计算图优化架构
|
1月前
|
SQL 流计算 关系型数据库
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
阿里云OpenLake解决方案建立在开放可控的OpenLake湖仓之上,提供大数据搜索与AI一体化服务。通过元数据管理平台DLF管理结构化、半结构化和非结构化数据,提供湖仓数据表和文件的安全访问及IO加速,并支持大数据、搜索和AI多引擎对接。本文为您介绍以Flink作为Openlake方案的核心计算引擎,通过流式数据湖仓Paimon(使用DLF 2.0存储)和EMR StarRocks搭建流式湖仓。
431 4
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
|
25天前
|
机器学习/深度学习 人工智能 API
【AI系统】昇腾异构计算架构 CANN
本文介绍了昇腾 AI 异构计算架构 CANN,涵盖硬件层面的达·芬奇架构和软件层面的全栈支持,旨在提供高性能神经网络计算所需的硬件基础和软件环境。通过多层级架构,CANN 实现了高效的 AI 应用开发与性能优化,支持多种主流 AI 框架,并提供丰富的开发工具和接口,助力开发者快速构建和优化神经网络模型。
37 1
|
1月前
|
机器学习/深度学习 弹性计算 人工智能
阿里云服务器架构有啥区别?X86计算、Arm、GPU异构、裸金属和高性能计算对比
阿里云ECS涵盖x86、ARM、GPU/FPGA/ASIC、弹性裸金属及高性能计算等多种架构。x86架构采用Intel/AMD处理器,适用于广泛企业级应用;ARM架构低功耗,适合容器与微服务;GPU/FPGA/ASIC专为AI、图形处理设计;弹性裸金属提供物理机性能;高性能计算则针对大规模并行计算优化。
|
1月前
|
消息中间件 Java Kafka
实时数仓Kappa架构:从入门到实战
【11月更文挑战第24天】随着大数据技术的不断发展,企业对实时数据处理和分析的需求日益增长。实时数仓(Real-Time Data Warehouse, RTDW)应运而生,其中Kappa架构作为一种简化的数据处理架构,通过统一的流处理框架,解决了传统Lambda架构中批处理和实时处理的复杂性。本文将深入探讨Kappa架构的历史背景、业务场景、功能点、优缺点、解决的问题以及底层原理,并详细介绍如何使用Java语言快速搭建一套实时数仓。
184 4
|
2月前
|
存储 数据采集 大数据
Flink实时湖仓,为汽车行业数字化加速!
本文由阿里云计算平台产品专家李鲁兵(云觉)分享,聚焦汽车行业大数据应用。内容涵盖市场趋势、典型大数据架构、产品市场地位及能力解读,以及典型客户案例。文章详细介绍了新能源汽车市场的快速增长、大数据架构分析、实时湖仓方案的优势,以及Flink和Paimon在车联网中的应用案例。
199 8
Flink实时湖仓,为汽车行业数字化加速!
|
1月前
|
SQL 存储 数据库
【赵渝强老师】基于Flink的流批一体架构
本文介绍了Flink如何实现流批一体的系统架构,包括数据集成、数仓架构和数据湖的流批一体方案。Flink通过统一的开发规范和SQL支持,解决了传统架构中的多套技术栈、数据链路冗余和数据口径不一致等问题,提高了开发效率和数据一致性。
123 7
|
1月前
|
运维 Serverless 数据处理
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
99 1
|
1月前
|
存储 SQL 缓存
AnalyticDB 实时数仓架构解析
AnalyticDB 是阿里云自研的 OLAP 数据库,广泛应用于行为分析、数据报表、金融风控等应用场景,可支持 100 trillion 行记录、10PB 量级的数据规模,亚秒级完成交互式分析查询。本文是对 《 AnalyticDB: Real-time OLAP Database System at Alibaba Cloud 》的学习总结。
71 1
|
1月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
72 1

热门文章

最新文章

推荐镜像

更多