让AI认出「生狗」?Facebook构建能感知变化算子的人工智能

简介: Facebook AI的最新研究在如何训练人工智能像人类一样感知周遭的细微变化方面取得了一些进展。

                    微信图片_20220113000253.jpg

 新智元报道  

来源:Facebook AI

编辑:LQ

【新智元导读】Facebook AI的最新研究在如何训练人工智能像人类一样感知周遭的细微变化方面取得了一些进展。


一条狗,即使是之前从未见过的品种、颜色,我们也能一眼认出它。

 

对周遭任何变化的感知是人类与生俱来的能力。

 

但是人工智能系统就不一样了,即使级别SOTA,能完成无数人类完成不了的任务,但也有很多对人类来说轻而易举的事情,它却搞不定,比如,让金毛换个角度:正面、侧面、前面、后面,人工智能可能会识别地很挣扎。

 

深度学习模型擅长解释像素和标签之间的统计模式,但却很难通过许多潜在的自然变化正确识别对象。

 

那是扫雪机在路上扫雪吗?还是一辆校车侧翻了?


微信图片_20220113000257.png

上图是根据M.A. Alcorn等人的 "Strike(with)a pose: Neural networks are easily fooled by strange poses of familiar objects"绘制,显示了一个深度神经网络将一辆公共汽车错误地分类为扫雪车。 


人类可以瞬间知道,但是颜色、大小和透视等因素使情况复杂化,增加了人工智能模型的预测难度。

 

Facebook AI一直在探索如何更好地捕捉自然变化,在这方面,传统解决方案有很大局限性,即所谓的解纠缠(disentanglement)。我们最近还提出了等变化移位算子(equivariant shift operator)的概念,这是一种替代解的概念证明,可以帮助模型理解通过模拟最常见的变换,物体可能会发生怎样的变化。

 

目前,Facebook AI在这方面的工作主要是理论性的,但是对于深度学习模型,特别是计算机视觉潜力巨大: 增加了可解释性和准确性,即使在小数据集上训练也有更好的性能,并提高了泛化能力。Facebook AI希望这些贡献能够使计算机视觉向前推进一步,更好地理解视觉世界的复杂性。

 

现行方法的局限


目前的解纠缠方法试图通过将模型中的每个因子编码到模型内部表示的一个单独的子空间中,来学习模型中对象的基本变换。

 

例如,解纠缠可能将狗图像的数据集编码为姿态、颜色和品种子空间。




微信图片_20220113000300.png



这种方法在识别刚性数据集的变化因素方面很有优势,比如一个单一的 MNIST 数字或者一个单一的对象,比如一把椅子,但是我们已经发现,在多个分类中,解纠缠的表现很差。

 

想象一下多个旋转的形状,比如三角形和正方形。解纠缠模型试图将物体的形状和方向这两个变化因素分离成两个变化因素。

 

下图说明了传统的解纠缠是无法在多个形状的数据集中孤立旋转的。我们期望高亮显示的形状会旋转,但是由于解纠缠失败,形状仍然是固定的。


 微信图片_20220113000302.png


解纠缠还带来了拓扑缺陷,这是一系列众多变换中的另一个问题。拓扑缺陷违背连续性——深度学习模型的本质属性。如果没有连续性,深度学习模型可能很难有效地学习数据中的模式。


微信图片_20220113000305.png


想象一下正三角形的旋转。旋转120度的正三角形与原来的三角形无法区分,导致在方向空间中有相同的表示。然而,通过在三角形的一个角上加一个无穷小的点,表示变得可辨别,违反了连续性。附近的图像映射到相距较远的图像。Facebook AI的研究还表明,拓扑缺陷出现在非对称形状和许多其他常见的变换中。

 

利用等变化算子揭示变化因子

 

与其将每个转换限制为一个表示的一个组件,如果转换可以改变整个表示呢?这种方法的目标是发现能够操纵图像及其表示的操作符ーー每个变化因子的一个操作符。这些被称为等变量。

 


微信图片_20220113000308.png


有一个数学分支「群论」可以教我们应用等变化算子的很多知识。它表明,一个直观的方式来理解变化因素是将他们模拟为一组转换。例如,一个三角形的旋转有一个组的结构: 90度旋转和30度旋转结合起来产生120度旋转。

 

Facebook AI利用这些想法来识别传统解纠缠的缺点,并确定如何训练等变化算子来解纠缠。我们提出了一个等变化算子,称为移位算子。这是一个矩阵,其块体模仿了常见变换的组结构--旋转、平移和重缩放。然后在原始图像和它们的转换上训练一个人工智能模型。


 微信图片_20220113000310.png 


这样就会发现,即使在包含多个类的数据集中,移位算子也能成功地学习变换--这正是传统解纠缠经常失败的条件。

 

未来

 

基于群论的等变模型极大地扩展了解纠缠的研究范围,现有的模型依赖于强有力的监督,例如先验地理解利益的转化,并在模型中加以实施。

 

但是,如何使用最少量的监督发现一个数据集的对称性?以前在这个领域的研究主要应用于合成数据,所以当他们面对不寻常的观察时,如一辆公共汽车侧面或一只狗的嘴里有一个超大的玩具时,基本对称性的知识可以使模型更加可靠。

 

人类通过直观地将不明物体与以前见过的物体进行比较来识别不明物体。模型可以被训练成与图像子部分的变换相等,而且关键的是,当遇到未知对象时,模型可以重新组合子部分。

 

最后,用基于群论的模型处理真实数据集是具有挑战性的,因为群体结构没有得到完全尊重。例如,当在非均匀背景中旋转一个物体时,有许多方法可以推断出旋转后出现的像素值。将这个想法扩展到更真实的设置和数据集,例如没有人工增强的图像,可能会被证明是一个有价值的方法。

 

参考资料:

https://ai.facebook.com/blog/building-ai-that-can-understand-variation-in-the-world-around-us/?utm_source=hootsuite&utm_medium=twitter&utm_term=facebookai&utm_content=05497535-f801-43ff-9b92-c4537125b3aa&utm_campaign=AI%20Blog

目录
打赏
0
0
0
0
371
分享
相关文章
通义灵码2.5评测:从编程智能体到记忆感知的AI编码革命
通义灵码2.5版本更新带来了多项新功能,包括Lingma IDE的开箱即用体验、编程智能体模式实现端到端编码任务、MCP工具集成扩展AI助手能力以及Qwen3模型升级大幅提升代码生成准确性和效率。此外,新增长期记忆与上下文感知功能,使开发更个性化和高效。尽管存在一些局限性,如复杂业务逻辑仍需人工干预,但整体显著提升了开发效率。官方还提供了高质量视频课程助力用户学习。
434 10
通义灵码 AI IDE 正式上线,智能体自动写代码,首创自动记忆,工程感知全面升级
阿里云发布的通义灵码AI IDE深度适配千问3大模型,集成智能编码助手功能,支持编程智能体、工具调用、工程感知等能力。其核心亮点包括:支持最强开源模型千问3,全面集成通义灵码插件能力,自带编程智能体模式,支持长期记忆与行间建议预测(NES)。通义灵码已覆盖主流IDE,助力开发者实现高效智能编程,插件下载量超1500万,生成代码超30亿行,成为国内最受欢迎的辅助编程工具。立即体验更智能的开发流程!
314 0
Collaborative Gym:斯坦福人机协作框架开源!异步交互+三方感知,让你的AI学会主动补位
介绍Collaborative Gym,一个专注于人机协作的框架,支持异步交互和多种任务环境。
155 14
Collaborative Gym:斯坦福人机协作框架开源!异步交互+三方感知,让你的AI学会主动补位
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
【AI系统】感知量化训练 QAT
本文介绍感知量化训练(QAT)流程,旨在减少神经网络从FP32量化至INT8时的精度损失。通过在模型中插入伪量化节点(FakeQuant)模拟量化误差,并在训练中最小化这些误差,使模型适应量化环境。文章还探讨了伪量化节点的作用、正向与反向传播处理、TensorRT中的QAT模型高效推理,以及QAT与PTQ的对比,提供了实践技巧,如从良好校准的PTQ模型开始、采用余弦退火学习率计划等。
309 2
【AI系统】感知量化训练 QAT
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
326 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
高级技术文章:使用 Kotlin 和 Unirest 构建高效的 Facebook 图像爬虫
高级技术文章:使用 Kotlin 和 Unirest 构建高效的 Facebook 图像爬虫
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
144 12
深度探索人工智能与物联网的融合:构建未来智能生态系统###
在当今这个数据驱动的时代,人工智能(AI)与物联网(IoT)的深度融合正引领着一场前所未有的技术革命。本文旨在深入剖析这一融合背后的技术原理、探讨其在不同领域的应用实例及面临的挑战与机遇,为读者描绘一幅关于未来智能生态系统的宏伟蓝图。通过技术创新的视角,我们不仅揭示了AI与IoT结合的强大潜力,也展望了它们如何共同塑造一个更加高效、可持续且互联的世界。 ###
人工智能伦理与监管:构建负责任的AI未来
【10月更文挑战第3天】随着人工智能(AI)技术的快速发展,其在社会各领域的应用日益广泛。然而,AI的广泛应用也带来了一系列伦理和监管挑战。本文旨在探讨AI的伦理问题,分析现有的监管框架,并提出构建负责任AI未来的建议。同时,本文将提供代码示例,展示如何在实践中应用这些原则。
1587 1

新智元

+ 订阅

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等