在家搭建了一套TensorFlow开源机器学习平台

简介: 在家搭建了一套TensorFlow开源机器学习平台

前言


  双十一之后的第一个周末双休,大家都“剁”手了吗。周末上午在家休息,下午 搭建了一套TensorFlow开源机器学习平台。

  上次已经搭建了一套Anaconda3,本次将基于Anaconda3搭建安装TensorFlow开源机器学习平台。需要看Anaconda3的安装详细教程的可以移步到这个传送门。

记录一次在Windows中安装Anaconda3的详细过程


初识TensorFlow


  TensorFlow是一个基于数据流编程的符号数学系统,被广泛应用于各类机器学习算法的编程实现。 TensorFlow由谷歌人工智能团队谷歌大脑开发和维护。TensorFlow支持多种客户端语言下的安装和运行1.12.0版本以后绑定完成并支持版本兼容运行的语言为C和Python,像JavaScript、C++、Java、Go和Swift等开发语言也正在完善中。


核心组件


  • 分发中心(distributed master)
  • 执行器(dataflow executor/worker service)
  • 内核应用(kernel implementation)
  • 最底端的设备层(device layer)
  • 网络层(networking layer)


快速安装


conda计算环境


建立一个python3.6的conda计算环境,命名为tensorflow。在终端中输入:

conda create -n tensorflow python=3.6


命令运行完之后,-*执行结果如下图所示


image.png

开始自动安装搭建一个TensorFlow环境

image.png


激活环境


为了激活TensorFlow环境,用下面的命令激活这个环境:

activate tensorflow


切换到tensorflow 下面


image.png


安装TensorFlow


下一步在上面创建的环境中,去安装TensorFlow,执行命令如下,

pip install tensorflow


已经开始安装

image.png


安装过程比较长,可能需要等待一段时间,安装中:

image.png

TensorFlow安装完成,如下图

image.png


检测安装情况


当TensorFlow安装完成之后,为了检查TensorFlow环境是否安装成功,需要执行如下命令。


python import tensorflow as tf
print (tf.__version__)


查看安装版本


image.png


安装成功之后,输入如下代码进行测试:


hello = tf.constant("hello, tensorflow! ") 
 sess = tf.Session() 
 print(sess.run(hello))

image.png


注意事项


  • 使用TensorFlow的时候需要激活conda环境,在cmd中先输入activate tensorflow
  • 退出TensorFlow环境,输入命令:deactivate
  • 查看环境信息conda info --envs

以下两张图是执行注意事项的截图


image.png


image.png


结语


  好了,以上就是在Windows中基于Anaconda3安装TensorFlow开源机器学习平台的详细过程


目录
相关文章
|
1月前
|
机器学习/深度学习 测试技术
阿里云入选Gartner数据科学和机器学习平台挑战者象限
Gartner® 正式发布了《数据科学与机器学习平台魔力象限》报告(Magic Quadrant™ for Data Science and Machine Learning Platforms),阿里云成为唯一一家入选该报告的中国厂商,被评为“挑战者”(Challengers)。
|
5天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
21 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
16天前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
43 5
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习【教育领域及其平台搭建】
机器学习【教育领域及其平台搭建】
47 7
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
55 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
2月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
103 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
1月前
|
JSON 测试技术 API
阿里云PAI-Stable Diffusion开源代码浅析之(二)我的png info怎么有乱码
阿里云PAI-Stable Diffusion开源代码浅析之(二)我的png info怎么有乱码
|
2月前
|
机器学习/深度学习 人工智能 算法
ML.NET:一个.NET开源、免费、跨平台的机器学习框架
ML.NET:一个.NET开源、免费、跨平台的机器学习框架
|
3月前
|
持续交付 测试技术 jenkins
JSF 邂逅持续集成,紧跟技术热点潮流,开启高效开发之旅,引发开发者强烈情感共鸣
【8月更文挑战第31天】在快速发展的软件开发领域,JavaServer Faces(JSF)这一强大的Java Web应用框架与持续集成(CI)结合,可显著提升开发效率及软件质量。持续集成通过频繁的代码集成及自动化构建测试,实现快速反馈、高质量代码、加强团队协作及简化部署流程。以Jenkins为例,配合Maven或Gradle,可轻松搭建JSF项目的CI环境,通过JUnit和Selenium编写自动化测试,确保每次构建的稳定性和正确性。
62 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024