Flink SQL Client实战CDC数据入湖

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: 本文介绍Flink SQL Client实现CDC数据入湖

总览

本文使用datafaker工具生成数据发送到MySQL,通过flink cdc工具将mysql binlog数据发送到kafka,最后再从kafka中读取数据并写入到hudi中。

与此同时,在将数据写入到hudi中时,同步进行查询。

组件版本与依赖

  • datafaker 0.6.3
  • mysql 5.7
  • zookeeper 3.6.3
  • kafka 2.8.0
  • hadoop 3.2.0
  • flink 1.12.2
  • hudi 0.9.0

为了完成以下内容,请确保mysql、zookeeper、kafka、hadoop正常安装并启动,并且mysql需要开启binlog。

相关组件安装方法可参考网站(https://www.lrting.top)右上角搜索框根据关键字进行搜索即可。

本文以两台主机作为测试,分别命名为hadoop和hadoop1,主机上安装的组件如下:

hadoop hadoop1
组件名称 组件名称
namenode zookeeper
datanode kafka
resourcemanager
nodemanager
mysql
flink

使用datafaker生成测试数据并发送到mysql

  1. 在数据库中新建stu3表
mysql -u root -p

create database test;
use test;
create table stu3 (
  id int unsigned auto_increment primary key COMMENT '自增id',
  name varchar(20) not null comment '学生名字',
  school varchar(20) not null comment '学校名字',
  nickname varchar(20) not null comment '学生小名',
  age int not null comment '学生年龄',
  class_num int not null comment '班级人数',
  phone bigint not null comment '电话号码',
  email varchar(64) comment '家庭网络邮箱',
  ip varchar(32) comment 'IP地址'
  ) engine=InnoDB default charset=utf8;
  1. 新建meta.txt文件,文件内容为:
id||int||自增id[:inc(id,1)]
name||varchar(20)||学生名字
school||varchar(20)||学校名字[:enum(qinghua,beida,shanghaijiaoda,fudan,xidian,zhongda)]
nickname||varchar(20)||学生小名[:enum(tom,tony,mick,rich,jasper)]
age||int||学生年龄[:age]
class_num||int||班级人数[:int(10, 100)]
phone||bigint||电话号码[:phone_number]
email||varchar(64)||家庭网络邮箱[:email]
ip||varchar(32)||IP地址[:ipv4]
  1. 生成10000条数据并写入到mysql中的test.stu3表
datafaker rdb mysql+mysqldb://root:Pass-123-root@hadoop:3306/test?charset=utf8 stu3 10000 --meta meta.txt 

备注:如果要再次生成测试数据,则需要将自增id中的1改为比10000大的数,不然会出现主键冲突情况。

hudi、flink-mysql-cdc、flink-kafka相关jar包

将jar包下载到flink的lib目录下

cd flink-1.12.2/lib
wget https://obs-githubhelper.obs.cn-east-3.myhuaweicloud.com/blog-images/category/bigdata/hudi/flink-sql-client-cdc-datalake/hudi-flink-bundle_2.12-0.9.0.jar
wget https://obs-githubhelper.obs.cn-east-3.myhuaweicloud.com/blog-images/category/bigdata/hudi/flink-sql-client-cdc-datalake/flink-connector-kafka_2.12-1.12.2.jar
wget https://obs-githubhelper.obs.cn-east-3.myhuaweicloud.com/blog-images/category/bigdata/hudi/flink-sql-client-cdc-datalake/flink-sql-connector-mysql-cdc-1.2.0.jar

备注:上述hudi-flink-bundle_2.12-0.9.0.jar已经修复了官方的bug,即不能加载默认配置项问题,建议使用上述提供的jar包。

如果你在启动以及运行flink任务中遇到缺少某些类问题,请下载相关jar包并放置到flink-1.12.2/lib目录下,本实验在操作过程中遇到的缺少的包如下(点击可下载):

在yarn上启动flink session集群

首先确保已经配置好HADOOP_CLASSPATH,对于开源版本hadoop3.2.0,可通过如下方式设置:

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$HADOOP_HOME/share/hadoop/client/*:$HADOOP_HOME/share/hadoop/common/*:$HADOOP_HOME/share/hadoop/hdfs/*:$HADOOP_HOME/share/hadoop/mapreduce/*:$HADOOP_HOME/share/hadoop/tools/*:$HADOOP_HOME/share/hadoop/yarn/*:$HADOOP_HOME/etc/hadoop/*

flink需要开启checkpoint,修改flink-conf.yaml配置文件

execution.checkpointing.interval: 150000ms
state.backend: rocksdb
state.checkpoints.dir: hdfs://hadoop:9000/flink-chk
state.backend.rocksdb.localdir: /tmp/rocksdb

启动flink session集群

cd flink-1.12.2
bin/yarn-session.sh -s 4 -jm 2048 -tm 2048 -nm flink-hudi-test -d

可看到yarn上启动的application

点击右边的ApplicationMaster即可进入到flink管理页面

启动flink sql client

cd flink-1.12.2
bin/sql-client.sh embedded -s yarn-session -j ./lib/hudi-flink-bundle_2.12-0.9.0.jar shell

进入如下flink SQL客户端

flink读取mysql binlog并写入kafka

我们通过flink SQL client构建实时任务将mysql binlog日志实时写入到kafka中:

创建mysql源表

create table stu3_binlog(
  id bigint not null,
  name string,
  school string,
  nickname string,
  age int not null,
  class_num int not null,
  phone bigint not null,
  email string,
  ip string
) with (
  'connector' = 'mysql-cdc',
  'hostname' = 'hadoop',
  'port' = '3306',
  'username' = 'root',
  'password' = 'Pass-123-root',
  'database-name' = 'test',
  'table-name' = 'stu3'
);

在with()中的属性都是mysql的连接信息。

创建kafka目标表

create table stu3_binlog_sink_kafka(
  id bigint not null,
  name string,
  school string,
  nickname string,
  age int not null,
  class_num int not null,
  phone bigint not null,
  email string,
  ip string,
  primary key (id) not enforced
) with (
  'connector' = 'upsert-kafka'
  ,'topic' = 'cdc_mysql_stu3_sink'
  ,'properties.zookeeper.connect' = 'hadoop1:2181'
  ,'properties.bootstrap.servers' = 'hadoop1:9092'
  ,'key.format' = 'json'
  ,'value.format' = 'json'
);

创建任务将mysql binlog日志写入kafka

insert into stu3_binlog_sink_kafka
select * from stu3_binlog;

可看到任务提交信息:

flink管理页面上也可以看到相关任务信息:

flink读取kafka数据并写入hudi数据湖

创建kafka源表

create table stu3_binlog_source_kafka(
  id bigint not null,
  name string,
  school string,
  nickname string,
  age int not null,
  class_num int not null,
  phone bigint not null,
  email string,
  ip string
 ) with (
  'connector' = 'kafka',
  'topic' = 'cdc_mysql_stu3_sink',
  'properties.bootstrap.servers' = 'hadoop1:9092',
  'format' = 'json',
  'scan.startup.mode' = 'earliest-offset',
  'properties.group.id' = 'testGroup'
  );

创建hudi目标表

 create table stu3_binlog_sink_hudi(
  id bigint not null,
  name string,
  `school` string,
  nickname string,
  age int not null,
  class_num int not null,
  phone bigint not null,
  email string,
  ip string,
  primary key (id) not enforced
)
 partitioned by (`school`)
 with (
  'connector' = 'hudi',
  'path' = 'hdfs://hadoop:9000/tmp/stu3_binlog_sink_hudi',
  'table.type' = 'MERGE_ON_READ',
  'write.option' = 'insert',
  'write.precombine.field' = 'school'
  );

创建任务将kafka数据写入到hudi中

insert into stu3_binlog_sink_hudi
select * from  stu3_binlog_source_kafka;

可以看到任务提交信息:

flink管理页面上也可以看到相关任务信息:

Flink UI查看数据消费情况

统计数据入hudi情况

 create table stu3_binlog_hudi_view(
  id bigint not null,
  name string,
  school string,
  nickname string,
  age int not null,
  class_num int not null,
  phone bigint not null,
  email string,
  ip string,
  primary key (id) not enforced
)
 partitioned by (`school`)
 with (
  'connector' = 'hudi',
  'path' = 'hdfs://hadoop:9000/tmp/stu3_binlog_sink_hudi',
  'table.type' = 'MERGE_ON_READ',
  'write.precombine.field' = 'school'
  );

select count(*) from stu3_binlog_hudi_view;  

hdfs查看hudi数据

实时查看数据入湖情况

接下来我们使用datafaker再次生成测试数据。

修改meta.txt为

id||int||自增id[:inc(id,10001)]
name||varchar(20)||学生名字
school||varchar(20)||学校名字[:enum(qinghua,beida,shanghaijiaoda,fudan,xidian,zhongda)]
nickname||varchar(20)||学生小名[:enum(tom,tony,mick,rich,jasper)]
age||int||学生年龄[:age]
class_num||int||班级人数[:int(10, 100)]
phone||bigint||电话号码[:phone_number]
email||varchar(64)||家庭网络邮箱[:email]
ip||varchar(32)||IP地址[:ipv4]

生成100000条数据

datafaker rdb mysql+mysqldb://root:Pass-123-root@hadoop:3306/test?charset=utf8 stu3 100000 --meta meta.txt 

实时查看数据入湖情况

 create table stu3_binlog_hudi_streaming_view(
  id bigint not null,
  name string,
  school string,
  nickname string,
  age int not null,
  class_num int not null,
  phone bigint not null,
  email string,
  ip string,
  primary key (id) not enforced
)
 partitioned by (`school`)
 with (
  'connector' = 'hudi',
  'path' = 'hdfs://hadoop:9000/tmp/stu3_binlog_sink_hudi',
  'table.type' = 'MERGE_ON_READ',
  'write.precombine.field' = 'school',
  'read.streaming.enabled' = 'true'
  );

 
 select * from  stu3_binlog_hudi_streaming_view;


了解更多

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
21天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
56 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
15天前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
43 9
|
18天前
|
SQL 存储 缓存
SQL Server 数据太多如何优化
11种优化方案供你参考,优化 SQL Server 数据库性能得从多个方面着手,包括硬件配置、数据库结构、查询优化、索引管理、分区分表、并行处理等。通过合理的索引、查询优化、数据分区等技术,可以在数据量增大时保持较好的性能。同时,定期进行数据库维护和清理,保证数据库高效运行。
|
4天前
|
SQL 缓存 监控
SQL性能提升指南:五大优化策略与十个实战案例
在数据库性能优化的世界里,SQL优化是提升查询效率的关键。一个高效的SQL查询可以显著减少数据库的负载,提高应用响应速度,甚至影响整个系统的稳定性和扩展性。本文将介绍SQL优化的五大步骤,并结合十个实战案例,为你提供一份详尽的性能提升指南。
11 0
|
1月前
|
SQL 移动开发 Oracle
SQL语句实现查询连续六天数据的方法与技巧
在数据库查询中,有时需要筛选出符合特定时间连续性条件的数据记录
|
1月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
1月前
|
SQL 存储 关系型数据库
添加数据到数据库的SQL语句详解与实践技巧
在数据库管理中,添加数据是一个基本操作,它涉及到向表中插入新的记录
|
1月前
|
SQL 数据挖掘 数据库
SQL查询每秒的数据:技巧、方法与性能优化
id="">SQL查询功能详解 SQL(Structured Query Language,结构化查询语言)是一种专门用于与数据库进行沟通和操作的语言
|
1月前
|
SQL 监控 数据处理
SQL数据库数据修改操作详解
数据库是现代信息系统的重要组成部分,其中SQL(StructuredQueryLanguage)是管理和处理数据库的重要工具之一。在日常的业务运营过程中,数据的准确性和及时性对企业来说至关重要,这就需要掌握如何在数据库中正确地进行数据修改操作。本文将详细介绍在SQL数据库中如何修改数据,帮助读者更好
218 4
|
1月前
|
分布式计算 监控 大数据
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
57 1
下一篇
无影云桌面