ElasticSearch02_DSL特定语言、match、bool、term、terms、aggs、from、size、range、sort排序查询、高亮显示(四)

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: ElasticSearch02_DSL特定语言、match、bool、term、terms、aggs、from、size、range、sort排序查询、高亮显示(四)

③. query/bool/must复合查询


  • ①. 复合语句可以合并,任何其他查询语句,包括符合语句。这也就意味着,复合语句之间可以互相嵌套,可以表达非常复杂的逻辑


  • ②. must:必须达到must所列举的所有条件


实例:查询gender=m,并且address=mill的数据
GET bank/_search
{
   "query":{
        "bool":{  # 
             "must":[ # 必须有这些字段
              {"match":{"address":"mill"}},
              {"match":{"gender":"M"}}
             ]
         }
    }
}
查询结果
{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 3,
      "relation" : "eq"
    },
    "max_score" : 6.0824604,
    "hits" : [
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "970",
        "_score" : 6.0824604,
        "_source" : {
          "account_number" : 970,
          "balance" : 19648,
          "firstname" : "Forbes",
          "lastname" : "Wallace",
          "age" : 28,
          "gender" : "M",  # M
          "address" : "990 Mill Road", # mill
          "employer" : "Pheast",
          "email" : "forbeswallace@pheast.com",
          "city" : "Lopezo",
          "state" : "AK"
        }
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "136",
        "_score" : 6.0824604,
        "_source" : {
          "account_number" : 136,
          "balance" : 45801,
          "firstname" : "Winnie",
          "lastname" : "Holland",
          "age" : 38,
          "gender" : "M", # 
          "address" : "198 Mill Lane", # 
          "employer" : "Neteria",
          "email" : "winnieholland@neteria.com",
          "city" : "Urie",
          "state" : "IL"
        }
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "345",
        "_score" : 6.0824604,
        "_source" : {
          "account_number" : 345,
          "balance" : 9812,
          "firstname" : "Parker",
          "lastname" : "Hines",
          "age" : 38,
          "gender" : "M",  # 
          "address" : "715 Mill Avenue",  # 
          "employer" : "Baluba",
          "email" : "parkerhines@baluba.com",
          "city" : "Blackgum",
          "state" : "KY"
        }
      }
    ]
  }
}


③. must_not:必须不匹配must_not所列举的所有条件


实例:查询gender=m,并且address=mill的数据,但是age不等于38的
GET bank/_search
{
  "query": {
    "bool": {
      "must": [
        { "match": { "gender": "M" }},
        { "match": {"address": "mill"}}
      ],
      "must_not": [  # 不可以是指定值
        { "match": { "age": "38" }}
      ]
   }
}
查询结果:
{
  "took" : 4,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 6.0824604,
    "hits" : [
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "970",
        "_score" : 6.0824604,
        "_source" : {
          "account_number" : 970,
          "balance" : 19648,
          "firstname" : "Forbes",
          "lastname" : "Wallace",
          "age" : 28, # 不是38
          "gender" : "M", #
          "address" : "990 Mill Road", #
          "employer" : "Pheast",
          "email" : "forbeswallace@pheast.com",
          "city" : "Lopezo",
          "state" : "AK" 
        }
      }
    ]
  }
}
相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
6月前
|
存储 自然语言处理 关系型数据库
Elasticsearch 查询时 term、match、match_phrase、match_phrase_prefix 的区别
【7月更文挑战第3天】Elasticsearch 查询时 term、match、match_phrase、match_phrase_prefix 的区别
|
5月前
|
自然语言处理 Java
ElasticSearch 实现分词全文检索 - match、match_all、multimatch查询
ElasticSearch 实现分词全文检索 - match、match_all、multimatch查询
461 0
|
5月前
|
自然语言处理 Java
ElasticSearch 实现分词全文检索 - term、terms查询
ElasticSearch 实现分词全文检索 - term、terms查询
202 0
|
6月前
|
监控 搜索推荐 Go
万字详解!在 Go 语言中操作 ElasticSearch
本文档通过示例代码详细介绍了如何在Go应用中使用`olivere/elastic`库,涵盖了从连接到Elasticsearch、管理索引到执行复杂查询的整个流程。
146 0
|
JSON 自然语言处理 数据格式
分布式系列教程(33) -ElasticSearch DSL语言查询与过滤
分布式系列教程(33) -ElasticSearch DSL语言查询与过滤
206 0
|
8月前
|
搜索推荐 算法 数据挖掘
探索 Elasticsearch 8.X Terms Set 检索的应用与原理
探索 Elasticsearch 8.X Terms Set 检索的应用与原理
137 0
|
8月前
|
自然语言处理
elasticsearch中term与match区别
elasticsearch中term与match区别
93 0
|
2月前
|
存储 安全 数据管理
如何在 Rocky Linux 8 上安装和配置 Elasticsearch
本文详细介绍了在 Rocky Linux 8 上安装和配置 Elasticsearch 的步骤,包括添加仓库、安装 Elasticsearch、配置文件修改、设置内存和文件描述符、启动和验证 Elasticsearch,以及常见问题的解决方法。通过这些步骤,你可以快速搭建起这个强大的分布式搜索和分析引擎。
69 5
|
3月前
|
存储 JSON Java
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
这篇文章是关于Elasticsearch的学习指南,包括了解Elasticsearch、版本对应、安装运行Elasticsearch和Kibana、安装head插件和elasticsearch-ik分词器的步骤。
296 0
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
|
4月前
|
NoSQL 关系型数据库 Redis
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
mall在linux环境下的部署(基于Docker容器),docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongodb、minio详细教程,拉取镜像、运行容器
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo