MIT科学家用AI设计「好奇心」算法:基于元学习探索奇妙世界

简介: 孩子们通过好奇心解锁世界。相比之下,把计算机放到新环境中通常会卡顿。为此,研究人员尝试将好奇心编码到他们的算法中,希望智能体在探索的驱动下,能够更好地了解他所处的环境。

微信图片_20220108210203.png


很多伟大的发明一开始都是好奇心驱使的。


苹果砸到牛顿头上,他开始思考为什么苹果会从树上掉下来,于是得出了万有引力定律。

微信图片_20220108210206.jpg


瓦特对烧水壶冒出的蒸汽十分好奇,最后改良了蒸汽机。因为好奇,成就了「昆虫界的荷马」法布尔。因为好奇,德莱斯发明了自行车。 数千年来,好奇心打开了人类的智慧大门。


在好奇心的驱使下,人们探索世界并从经验中学到了新技能。相比之下,把计算机放到新的环境中,有时就会出现故障。


微信图片_20220108210209.png


将「好奇心」编码到算法中


为了能让计算机更好地适应新环境,工程师们尝试将好奇心编码到算法中,希望在好奇心推动下智能体能够去更有效地探索,了解他所处的环境。


就和小孩学习新事物一样,智能体要首先从捡东西,操纵使用物体,投掷东西学起,实现了这些基本操作,学习其他事物的能力也会随之加快


工程师已发现了许多方法,能够将好奇探索机制编码到机器学习算法中。一直以来,研究人员也通过计算机来搜索新的算法。最近,麻省理工学院的一个研究小组在思考计算机在算法设计方面是否比人有优势。


近年来,深度神经网络的设计(通过调整参数来搜索解决方案的算法)已通过Google的AutoML和Python中的auto-sklearn等软件实现了自动化。这使那些非专业人士也能轻易地开发AI应用程序。


但是,尽管深度神经网络擅长做特定任务,但它们在新的环境中适用性不高。相比之下,用高级编程语言编出的算法能在不同任务和环境中迁移知识。


利用AI自动设计算法


 研究的合著者,麻省理工学院电气工程与计算机科学系,以及计算机科学与人工智能实验室(CSAIL)的研究生Ferran Alet说:「人为设计的算法非常普通。我们受到启发,使用AI来发现具有好奇心且能适应各种不同环境的算法。」


微信图片_20220108210211.png


同时,作者表示,「 我们从人和其他动物的好奇行为中汲取了灵感。假设好奇心是进化过程中探索发现的一种机制,该机制促使智能体在生命早期进行有意义的探索。这项探索使它能够在其一生学习中,不断获取经验赢得高额回报。我们将产生好奇行为的问题作为一种元学习。


研究人员创建了一种「元学习」算法,该算法生成了52,000个探索算法。他们发现最上面的两个是全新的算法,从人为角度看,似乎太明显,违反直觉了。这两种算法都产生了探索行为,从根本上改善了一系列模拟任务中的学习过程,从二维网格图像导航到机器人蚂蚁行走。由于元学习过程会输出高级计算机代码,因此可以分解这两种算法,以了解其内部决策过程。



该论文的高级作者是麻省理工学院计算机科学和电气工程学教授Lesile Kaelbling和Tomas Lozano-Perez。这项工作将在2020ICLR大会上进行具体介绍。


该论文获得了许多没有参与其中的研究人员的称赞。


Google的首席科学家Quoc Le表示,「使用程序检索来发现更好的内在奖励机制是非常有创意的,它帮助开拓了计算机辅助深度学习模型的设计。我非常喜欢这个idea,在于它的程序是可以解读的」


研究人员将自动化的算法设计过程,比作是用有限的单词来写句子的过程。他们首先选择了一组基本构建模块来定义其探索算法。在研究了其他好奇心算法以获得灵感之后,他们挑选了30多种高级操作,包括基本程序和深度学习模型,来引导智能体做一些事情,比如记住以前的输入,比较当前和过去的输入,并使用学习方法来改变自己的模块。然后,计算机一次最多可以组合7种不同操作,生成描述52,000种算法的计算图。


即使用一台快速的计算机,对所有的算法进行测试都要花费数十年的时间。因此,研究人员首先排除了那些从代码结构就预测出其性能较差的算法,来缩小范围。


然后,他们在一项基本的网格坐标导航任务上测试了那些最看好的算法,网格导航任务需要大量的探索行为,但计算量最少。如果某项算法表现良好,那么它的表现就成为新的基准,从而淘汰更多候选人。


研究人员用四台计算机搜索了10多个小时,以找到最佳算法。


结果发现,超过99%都是垃圾算法,但大约有一百种是优胜的高性能算法。


值得注意的是,前16名优胜的算法既新颖又好用,在其他虚拟任务(从登上月球车,到举起机械臂,再到移动类似蚂蚁的机器人)的性能上,都比人类设计的算法要好,至少实力相当。


所有16种算法都产生了两个基本的探索功能。


智能体会在两种情况下受到奖励:


第一种,智能体会因为访问新的地方而获得奖励,因为在那里他们有更大的机会采取新的行动。


第二种,智能体也会因为访问新地方而获得奖励,但以一种更细微的方式: 其中一个神经网络预测未来的状态,而另一个回忆过去,然后试图通过在未来回忆过去来预测现在。如果这个预测结果是错误的,那么它会奖励自己,因为这是一个信号,表明它发现了以前不知道的东西。第二种算法是如此违反直觉,以至于研究人员花了很长时间才弄明白。


「我们的偏见常常使我们无法尝试非常创新的想法,」Alet说。「但是计算机不会。他们会多多尝试,看看怎么样,有时反而会得到意想不到的出色结果。」


越来越多的研究人员转向机器学习,来设计更好的机器学习算法,这其中就包括AutoML。Google的Le和他的同事们最近推出了一款新的算法发现工具,名为Auto-ML Zero。 (它的名字是谷歌的 AutoML 软件和谷歌 DeepMind 的 Alpha Zero的结合,前者为给定的应用程序定制深层网络架构,后者可以通过自己玩数百万个游戏,来学习玩不同的棋盘游戏。)


微信图片_20220108210214.png


他们的方法是在大量的算法当中搜索原始运算更简单的算法。但是,他们的目标不是发现探索策略,而是发现能够对图像进行分类的算法。两项研究都表明,人类有能力使用机器学习方法来创建新颖的,高性能的机器学习算法。


「生成的算法可以被人类读取和解读,但是要真正理解这些代码,我们必须对每个变量和操作进行推理,以及它们如何随着时间演变,」研究合著者,麻省理工学院研究生Martin Schneider说。「设计算法和工作流程,利用计算机来评估大量算法,是一个有趣的挑战。同时我们也要来解释和改进这些想法,



参考链接:


https://www.csail.mit.edu/news/automating-search-entirely-new-curiosity-algorithms

相关文章
|
23天前
|
传感器 人工智能 监控
智慧电厂AI算法方案
智慧电厂AI算法方案通过深度学习和机器学习技术,实现设备故障预测、发电运行优化、安全监控和环保管理。方案涵盖平台层、展现层、应用层和基础层,具备精准诊断、智能优化、全方位监控等优势,助力电厂提升效率、降低成本、保障安全和环保合规。
智慧电厂AI算法方案
|
1月前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
99 9
|
3天前
|
存储 人工智能 缓存
【AI系统】Im2Col 算法
Caffe 作为早期的 AI 框架,采用 Im2Col 方法优化卷积计算。Im2Col 将卷积操作转换为矩阵乘法,通过将输入数据重排为连续内存中的矩阵,减少内存访问次数,提高计算效率。该方法首先将输入图像转换为矩阵,然后利用 GEMM 库加速计算,最后将结果转换回原格式。这种方式显著提升了卷积计算的速度,尤其适用于通道数较多的卷积层。
17 5
【AI系统】Im2Col 算法
|
19天前
|
机器学习/深度学习 传感器 人工智能
智慧无人机AI算法方案
智慧无人机AI算法方案通过集成先进的AI技术和多传感器融合,实现了无人机的自主飞行、智能避障、高效数据处理及多机协同作业,显著提升了无人机在复杂环境下的作业能力和安全性。该方案广泛应用于航拍测绘、巡检监测、应急救援和物流配送等领域,能够有效降低人工成本,提高任务执行效率和数据处理速度。
智慧无人机AI算法方案
|
1月前
|
存储 算法 安全
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
数据结构与算法系列学习之串的定义和基本操作、串的储存结构、基本操作的实现、朴素模式匹配算法、KMP算法等代码举例及图解说明;【含常见的报错问题及其对应的解决方法】你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
|
29天前
|
人工智能 知识图谱
成熟的AI要学会自己搞研究!MIT推出科研特工
MIT推出科研特工SciAgents,结合生成式AI、本体表示和多代理建模,实现科学发现的自动化。通过大规模知识图谱和多代理系统,SciAgents能探索新领域、识别复杂模式,加速新材料发现,展现跨学科创新潜力。
41 12
|
23天前
|
传感器 人工智能 监控
智慧化工厂AI算法方案
智慧化工厂AI算法方案针对化工行业生产过程中的安全风险、效率瓶颈、环保压力和数据管理不足等问题,通过深度学习、大数据分析等技术,实现生产过程的实时监控与优化、设备故障预测与维护、安全预警与应急响应、环保监测与治理优化,全面提升工厂的智能化水平和管理效能。
智慧化工厂AI算法方案
|
1月前
|
人工智能 自然语言处理 搜索推荐
AI辅助教育:个性化学习的新纪元
【10月更文挑战第31天】随着人工智能(AI)技术的发展,教育领域迎来了一场前所未有的变革。AI辅助教育通过智能推荐、语音助手、评估系统和虚拟助教等应用,实现了个性化学习,提升了教学效率。本文探讨了AI如何重塑教育模式,以及个性化学习在新时代教育中的重要性。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI驱动的个性化学习平台构建###
【10月更文挑战第29天】 本文将深入探讨如何利用人工智能技术,特别是机器学习与大数据分析,构建一个能够提供高度个性化学习体验的在线平台。我们将分析当前在线教育的挑战,提出通过智能算法实现内容定制、学习路径优化及实时反馈机制的技术方案,以期为不同背景和需求的学习者创造更加高效、互动的学习环境。 ###
58 3
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】基于多轮课程学习的大语言模型蒸馏算法 TAPIR
阿里云人工智能平台 PAI 与复旦大学王鹏教授团队合作,在自然语言处理顶级会议 EMNLP 2024 上发表论文《Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning》。