人工智能和机器学习技术推动企业发展

简介: IT主管们已经开始收获人工智能和机器学习技术所带来的回报。最近的一项调查显示,随着经济遭遇重创,有一半的主管正在考虑加大投资能够带来收益的人工智能和机器学习技术。

到目前为止,我们大多数人都知道,在当今时代,人工智能及其子领域机器学习技术与人类智能没什么关系。人工智能/机器学习技术主要涉及识别数据模式和自动执行一些独立的任务,包括可标记欺诈性金融交易的算法、回答客户问题的聊天机器人等。你猜怎么着?IT主管们很看重其巨大的潜力。


根据2月发布的针对IT主管的“首席信息官技术民意调查”(CIO Tech Poll),62%的受访者认为人工智能/机器学习是最具颠覆性的技术,42%的受访者认为这些技术具有最大的影响力——这两项数据使人工智能/机器学习技术的百分比是其最强竞争对手(大数据分析技术)的两倍。令人印象深刻的是,有18%的人已经在生产中使用了人工智能/机器学习解决方案。


7月份,在“首席信息官疫情业务影响调查(CIO Pandemic Business Impact Survey)”中提出了一个更具煽动性的问题:“您公司对考虑更多使用人工智能/机器学习技术以减少或降低人力资源成本的可能性有多大?”将近一半(48%)的受访者表示,这样做的可能性很大或有可能。这意味着,随着经济衰退的加剧,对人工智能/机器学习解决方案的需求可能会大大增加。


现在是时候来制定您的人工智能/机器学习技术策略了。为此,媒体记者和分析师剖析了这些问题,并提供了一些有意义的建议。



智能企业



尽管毫无疑问,人工智能/机器学习技术会取代某些工作,但是马修·芬尼根(Matthew Finnegan)在“计算机世界”平台上发表的文章,名为“工作中的人工智能:您的下一位同事可能是一个算法”,其着重讨论了人工智能系统与人类合作以提高工作效率的情况。最有趣的例子之一是“协作机器人”,它与工厂车间的工人一起工作,以提高员工的能力。


高效的人工智能/机器学习解决方案有多种形式,例如在“首席信息官”平台,克林特·博尔顿(Clint Boulton)在“5个机器学习成功案例:内部观察”一文中讲述了一系列新的案例研究。此文读起来就像是机器学习应用的精选合集:通过预测分析来预测医学治疗结果,通过密集数据分析实现个性化产品推荐,通过图像分析以提高作物产量。一个清晰的模式:当某个组织看到机器学习技术在某一领域取得成功后,类似的机器学习技术就会经常应用于其他领域。


撰稿人尼尔·温伯格(Neil Weinberg)在“人工智能如何创建自动化运营数据中心”一文中着重介绍了人工智能/机器学习技术的高度实用性直接使IT部门受益。根据温伯格的说法,人工智能/机器学习技术可以处理电源、设备和工作负载管理工作,并可在无需人工干预情况下持续进行优化(就硬件而言,可以预测故障)。数据中心的安全性也会受益于人工智能/机器学习功能,其既可以提醒管理员存在异常情况,也可以识别漏洞及其提供补救措施。


各种形式的机器学习技术通常从发现大量数据的模式开始。但在许多情况下,正如“首席安全官”平台的撰稿人玛利亚·科洛夫(Maria Korlov)在“您的人工智能和机器学习项目的安全性如何?”一文中所述,这些数据可能都是敏感的。科洛夫指出,数据安全性通常是事后才想到的,这使得某些机器学习系统本身就很容易发生数据泄露。其解决方案是从一开始就制定明确的安全策略,而在大型组织中,则要专门任命一名高管来管理与人工智能相关的风险。


那么您应该在哪里设计人工智能/机器学习解决方案呢?“信息世界”平台的特约编辑马丁·海勒(Martin Heller)认为,公共云提供商提供了极具吸引力的方案,但您需要仔细选择。在“如何选择云端机器学习平台”一文中,海勒概述了每个云端机器学习平台应具备的12种功能以及为什么需要这些功能。由于有如此多的数据分析工作负载转移到云端,因此利用机器学习技术来获取更大的价值,这是很合理的——但至关重要的是,您应该确保能够使用到最好的机器学习框架,并从预训练的模型中受益。


我们距离与人类智能相当的人工智能仍还差几代。同时,人工智能/机器学习技术将逐渐渗透到几乎所有类型的应用程序中,从而减少一些繁琐的工作,并提供前所未有的功能。难怪IT主管们认为,这些技术将产生最大的影响。

相关文章
|
14天前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
16天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
72 3
|
6天前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在医疗领域的应用####
本文探讨了人工智能(AI)技术在医疗领域的创新应用及其带来的革命性变化。通过分析AI在疾病诊断、个性化治疗、药物研发和患者管理等方面的具体案例,展示了AI如何提升医疗服务的效率和准确性。此外,文章还讨论了AI技术面临的挑战与伦理问题,并展望了未来的发展趋势。 ####
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在医疗领域的应用与前景####
本文探讨了人工智能(AI)在医疗领域的多方面应用,包括疾病诊断、个性化治疗、患者管理以及药物研发等。通过对现有技术的梳理和未来趋势的展望,旨在揭示AI如何推动医疗行业的变革,并提升医疗服务的质量和效率。 ####
33 5
|
14天前
|
人工智能 文字识别 运维
AI多模态的5大核心关键技术,让高端制造实现智能化管理
结合大模型应用场景,通过AI技术解析高端制造业的复杂设备与文档数据,自动化地将大型零件、机械图纸、操作手册等文档结构化。核心技术包括版面识别、表格抽取、要素抽取和文档抽取,实现信息的系统化管理和高效查询,大幅提升设备维护和生产管理的效率。
|
16天前
|
机器学习/深度学习 人工智能 算法
人工智能与机器学习的融合之旅
【10月更文挑战第37天】本文将探讨AI和机器学习如何相互交织,共同推动技术发展的边界。我们将深入分析这两个概念,了解它们是如何互相影响,以及这种融合如何塑造我们的未来。文章不仅会揭示AI和机器学习之间的联系,还会通过实际案例展示它们如何协同工作,以解决现实世界的问题。
|
15天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
50 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
19天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
74 4
|
19天前
|
机器学习/深度学习 人工智能 算法
基于AI的性能优化技术研究
基于AI的性能优化技术研究
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之解释性AI与可解释性机器学习
随着人工智能技术的广泛应用,机器学习模型越来越多地被用于决策过程。然而,这些模型,尤其是深度学习模型,通常被视为“黑箱”,难以理解其背后的决策逻辑。解释性AI(Explainable AI, XAI)和可解释性机器学习(Interpretable Machine Learning, IML)旨在解决这个问题,使模型的决策过程透明、可信。
40 2