2019年的数据和人工智能市场格局:将出现下一波混合浪潮

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
NLP 自学习平台,3个模型定制额度 1个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 与五年前不同的是,Hadoop不再是分析大数据的唯一途径。从完整平台到专门的点服务(如Spark、流媒体、数据转换、人工智能)都采用了云计算产品。此外,在云中,对象存储正在成为事实上的数据湖。

如今的数据格局如果没有人工智能就不再完整。商业智能领域出现了一个整合浪潮,这引发了一个问题,是否会推出新一代人工智能?混合云现在不再成为大多数企业的抽象术语。


与五年前不同的是,Hadoop不再是分析大数据的唯一途径。从完整平台到专门的点服务(如Spark、流媒体、数据转换、人工智能)都采用了云计算产品。此外,在云中,对象存储正在成为事实上的数据湖。但是随着Mapr的衰落以及HortonWorks和Cloudera的合并,仍然有着很好的客户基础,至少有两千个蓝筹股客户,并且绝大多数是内部客户,他们每年将支付上百万美元的支持费用。而这些工作负载不会一夜之间转移到云端。


尽管如此,企业将业务迁移到云端是显而易见的。Firstmark公司的调查报告与Ovum公司所做的预测一致,2019年,大多数新的大数据工作负载将从云端开始。FirstMark公司期待出现这一点,但也有一些问题。当企业考虑云计算新的战略工作负载时,有人担心云供应商的锁定。混合云得到了行业厂商的关注,而像IBM这样的基础设施厂商已经在云计算第一轮发展浪潮中错过,因此有些厂商希望获得第二次机会。而Kubernetes并没有迷失,谷歌开源项目让用户更加关注混合云。当然,这也推动了IBM公司以340亿美元收购Red Hat,但其举措远远落后于谷歌Anthos产品,该公司重新打包其Kubernetes服务,企业可以在AWS云平台中运行谷歌云本地工作负载(无需采用谷歌硬件)。


但是人们在采用Kubernetes服务时需要花费时间熟悉和适应,Kubernetes仍然是一块未经打磨的钻石,其安全性、负载平衡、服务配置等方面的最佳实践仍在进行中。尽管如此,FirstMark推测,由于数据科学家或数据工程师希望对他们的环境施加更多的控制,Kubernetes可能会促使他们远离基于云计算的机器学习服务。机器学习对数据的需求非常旺盛,因此,其关键的推动因素或者说障碍,取决于人们的观点,将是企业在内部存储或处理所有数据的能力、意愿、成本等等。而专家对Kubernetes的看法是,对于除了最复杂的企业IT组织之外的所有人来说,它将变得过于复杂,尽管像IBM公司或Pivotal公司这样的第三方的使命是将所有的复杂性隐藏在一个黑盒里。


该报告还研究了复杂分析和机器学习工作负载的无服务器计算的状态,同样认为它处在黄金时期还为时尚早。无服务器随着敏捷开发具有短期流程的应用程序或具有不稳定流量峰值的数据库而变得流行。无服务器的开发简单性,让系统自动调整计算量,对于实现敏捷的开发人员具有吸引力,但是长时间运行的机器学习过程将使无服务器遇到障碍,正如FirstMark公司调查报告所指出的那样。


另一个痛苦的领域将是数据管理和治理,这个问题与一系列新的和拟议的数据隐私法相结合。对于数据库和商业智能的经验丰富的公司和个人来说,这些问题并不新鲜。当企业拥有如此多的数据时,如何找到要查找的内容?数据目录由Alation和Waterline Data等第三方提供,并内置于像Cloudera这样的数据平台。例如,由Google Ventures提供部分支持的Colibra公司最近筹集到1亿美元,但同时,并没有阻止谷歌云计算人员公布他们自己的数据目录,这些数据目录与Collibra的数据目录重叠。但并非所有数据目录都是平等的。有些是高度协作的工具,它们利用机器学习来抓取和构建查询以访问数据,而其他工具则是一些数据字典。


FirstMark公司的调查报告认为,数据沿袭是新兴的另一项技术——它应该告诉人们数据来自何处,并提供审计跟踪,以了解数据是如何被使用的,最好是由谁使用。虽然数据沿袭应该提供单一的真相来源,但面临的挑战是,分析工具、数据目录、数据平台都在记录各自对数据沿袭的看法,提供了拥有很多好处的最新示例。


如果不涉及商业领域的最新一轮整合,那么对2019年数据和分析领域的调查就不会完整,谷歌公司收购Looker公司,Salesforce公司兼并Tableau公司, Alteryx公司收购ClearStory Data公司,以及Logi Analyti公司收购Zoomdata公司。与10年前的商业智能整合浪潮相似的是,Business Objects、Cognos和Hyperion分别被SAP、IBM和Oracle收购。FirstMark公司推测市场的兼容并购可能还没有结束,亚马逊公司可能考虑收购QuickSight。商业智能的下一波创新将是将作为数字助理的机器学习嵌入到业务分析中,帮助选择和清理数据。人们可能会在现有工具中看到很多这种创新,例如Tableau公司的Ask Data自然语言查询,但这也可能是初创企业围绕自然语言和数字辅助进行设计的动力,而不是对其进行改造。


作为商业智能民主化分析,FirstMark公司将机器学习视为下一个适合市场发展的分析领域。它将市场空间分成几个部分:第一个是AutoML,它可以自动化开发和生产机器学习模型的大部分工作,受到云计算用户和第三方(如Data Robot)的关注。第二个是存储桶,主要是第三方的领域,如Dataiku、RapidMiner和H2O,它添加了大量的协作组件。Firstmark公司的调查报告描绘出这些工具将如何解释人工智能模型。


FirstMark公司还在水平服务中看到人工智能活动的温床,例如计算机视觉、自然语言处理、语音到文本,它们正在将数据池的深度学习端商业化。但也提出了一个警告,那就是水平服务敲开了人工通用智能(人工智能越来越接近人类能力)的大门,现在其能力相对有限(他们执行文本翻译等任务,但实际思考能力有限)。因此,市场处于更加早期的发展状态。还有一些常规服务,如Amazon Rekognition,以及谷歌联系中心人工智能等垂直服务的开端。FirstMark公司注意到自然语言处理(NLP)等基线功能的重大改进。


最终,人工智能的最大收益将嵌入到业务应用程序中。这是SAP Leonardo计划背后的主要推动力。Leonardo计划本身不是一种产品或一组产品,但其作用之一是作为一个实验室,让SAP从客户参与中发现生产机会。但Firstmark公司认为这意味着要经历3~4年的漫长旅程。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
1月前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
22天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
40 12
|
1月前
|
人工智能 算法
人工智能浪潮中的伦理困境:我们如何确保技术的道德发展?
【10月更文挑战第22天】在人工智能(AI)技术的迅猛发展中,伴随着巨大的潜力和便利性,也出现了众多伦理问题。从数据隐私到算法偏见,再到自动化带来的失业问题,AI的每一步进步都在考验着人类社会的道德底线。本文将探讨AI技术发展中的主要伦理问题,并讨论如何通过制定标准、教育和跨学科合作来确保AI技术的道德发展。
|
2月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮中的编程教育革新
【10月更文挑战第21天】在人工智能飞速发展的今天,编程教育正面临着前所未有的变革。本文通过探讨AI技术对编程教育的深远影响,以及如何利用这些技术优化教学过程,旨在启发读者思考教育的未来方向。我们将一起探索从基础语法学习到复杂算法应用的转变,并讨论如何培养适应未来社会的创新人才。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能:引领技术革命的新浪潮
【10月更文挑战第14天】 在科技日新月异的今天,人工智能(AI)已经成为推动社会进步的重要力量。本文将探讨AI技术的发展现状、应用领域以及未来趋势,旨在为读者提供一个全面了解AI技术的窗口。
44 2
|
3月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程新范式
【9月更文挑战第27天】在AI技术飞速发展的今天,编程领域也迎来了新的变革。本文将深入探讨AI如何改变编程范式,以及这种变革对程序员和整个软件开发行业的影响。通过分析AI技术的特点和优势,我们将揭示它如何为编程带来更高效、智能的解决方案,并展望这一趋势对未来软件开发的深远影响。
65 2
|
3月前
|
人工智能 算法 自动驾驶
人工智能浪潮下的伦理困境:我们如何面对?
随着人工智能技术的快速发展,其在医疗、交通、教育等多个领域的应用日益广泛。然而,技术的突飞猛进也带来了前所未有的伦理问题,如隐私泄露、算法偏见和责任归属等。本文将探讨人工智能带来的伦理挑战,并分析如何在享受技术红利的同时,有效规避潜在的道德风险。
131 4
|
3月前
|
人工智能 搜索推荐
人工智能浪潮下的伦理困境:我们如何应对?
在人工智能技术飞速发展的今天,它不仅改变了我们的生活方式,更引发了深刻的社会伦理问题。本文旨在探讨AI技术带来的伦理挑战,包括隐私泄露、就业置换、决策透明度和机器自主性等议题,并提出相应的对策建议,以期为AI技术的健康发展提供指导。
|
3月前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的编程实践:从Python到深度学习的探索之旅
【9月更文挑战第6天】 在人工智能的黄金时代,编程不仅仅是一种技术操作,它成为了连接人类思维与机器智能的桥梁。本文将通过一次从Python基础入门到构建深度学习模型的实践之旅,揭示编程在AI领域的魅力和重要性。我们将探索如何通过代码示例简化复杂概念,以及如何利用编程技能解决实际问题。这不仅是一次技术的学习过程,更是对人工智能未来趋势的思考和预见。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的浪潮之巅:探索人工智能的未来之路
在本文中,我们将一起踏上一场关于深度学习的奇妙之旅。从基本概念到最新应用,我们将一探究竟,看看这项技术如何改变了我们的生活和工作方式。无论你是科技爱好者,还是对人工智能充满好奇的新手,这篇文章都将为你揭开深度学习的神秘面纱,让你对这个令人兴奋的领域有更深入的了解。那么,让我们一起开始吧!