3D深度学习火了!NVIDIA NeurIPS论文:训练AI迅速将2D图像转换成3D模型

简介: 3D深度学习火了!NVIDIA NeurIPS论文:训练AI迅速将2D图像转换成3D模型

NVIDIA的研究团队开发出一个人工智能系统,它可以在不需要任何3D训练数据的情况下,预测2D图像的3D特征。该项研究成果会在NIPS(Neural Information Processing Systems)年会上公布;今年的NIPS年会有超过13000名与会者,是今年最大的人工智能研究会议。


这项工作由加拿大向量学院(Vector Institute)、多伦多大学(University of Toronto)、Nvidia Research、阿尔托大学(Aalto University)共同完成,相关研究的细节呈现在论文《Learning to Predict 3D Objects with an Interpolation-based Differentiable Renderer》中。


image.png

论文链接:https://nv-tlabs.github.io/DIB-R/files/diff_shader.pdf


Nvidia的人工智能总监和论文合著者Sanja Fidler说:“公司下一步可能会尝试将可微渲染框架(Differentiable Rendering Framework,DIB-R)扩展到更复杂的任务,比如为多个对象或整个场景渲染三维模型;这样的工作可以应用于游戏、AR/VR、机器人或目标跟踪系统中。”


Fidler还说:“关于三维深度学习目前很多公司已经做了一些工作,如Facebook AI Research与DeepMind也能将二维转化成三维AI,但DIB-R是第一个可以通过二维图像预测几个关键的三维特征(如对象的形状、三维几何、颜色和纹理)的神经或者深度学习架构之一。因此尽管之前有很多研究,但没有一个能真正同时预测所有这些关键属性的研究;它们不是专注于预测几何形状就是专注于预测颜色,而不是同时预测形状、颜色、纹理和光线;而我们的这项研究是真正完成了——不是完全完成,但却是对一个场景中的对象更加完整的理解。


image.png


NeurIPS的一项相关工作是试图根据人们的声音来预测他们的“声之形”。


Fidler说:“我认为这是一个非常有趣的领域,我们没有在这篇特别的论文中解决这个问题;但就深度学习而言,这是另一个有趣的输入,当提供给神经结构后就可以得到非常好的三维信息;如今,我认为这绝对是有效的。


DIB-R是在Nvidia今年发布Kaolin(Kaolin是Nvidia的三维深度学习库,拥有一系列的模型来帮助开发人员开始使用神经网络进行三维处理)之后发布的,Nvidia会在NeurIPS上公布五篇论文:《Learning to Predict 3D Objects with an Interpolation-based Differentiable Renderer》、《Joint-task Self-supervised Learning for Temporal Correspondence》、《Dancing to Music》、《Few-shot Video-to-Video Synthesis》、《Exact Gaussian Processes on a Million Data Points》。


参考资料:

https://venturebeat.com/2019/12/09/nvidia-trains-ai-to-transform-2d-images-into-3d-models/


相关文章
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
CogAgent-9B 是智谱AI基于 GLM-4V-9B 训练的专用Agent任务模型,支持高分辨率图像处理和双语交互,能够预测并执行GUI操作,广泛应用于自动化任务。
35 12
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
|
13天前
|
人工智能
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
AniDoc 是一款基于视频扩散模型的 2D 动画上色 AI 模型,能够自动将草图序列转换为彩色动画。该模型通过对应匹配技术和背景增强策略,实现了色彩和风格的准确传递,适用于动画制作、游戏开发和数字艺术创作等多个领域。
83 16
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
|
23天前
|
人工智能 安全 测试技术
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
EXAONE 3.5 是 LG AI 研究院推出的开源 AI 模型,擅长长文本处理,能够有效降低模型幻觉问题。该模型提供 24 亿、78 亿和 320 亿参数的三个版本,支持多步推理和检索增强生成技术,适用于多种应用场景。
75 9
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
|
5天前
|
人工智能 智能硬件
SPAR:智谱 AI 推出自我博弈训练框架,基于生成者和完善者两个角色的互动,提升了执行准确度和自我完善能力
SPAR 是智谱团队推出的自我博弈训练框架,旨在提升大型语言模型在指令遵循方面的能力,通过生成者和完善者的互动以及树搜索技术优化模型响应。
19 0
SPAR:智谱 AI 推出自我博弈训练框架,基于生成者和完善者两个角色的互动,提升了执行准确度和自我完善能力
|
18天前
|
人工智能 自然语言处理 物联网
AI Safeguard联合 CMU,斯坦福提出端侧多模态小模型
随着人工智能的快速发展,多模态大模型(MLLMs)在计算机视觉、自然语言处理和多模态任务中扮演着重要角色。
|
25天前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
114 5
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的原理与应用:开启智能时代的大门
深度学习的原理与应用:开启智能时代的大门
84 16
|
17天前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
77 19
|
17天前
|
机器学习/深度学习 传感器 人工智能
探索深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过介绍卷积神经网络(CNN)的基本原理和架构设计,阐述了深度学习如何有效地从图像数据中提取特征,并在多个领域实现突破性进展。同时,文章也指出了训练深度模型时常见的过拟合问题、数据不平衡以及计算资源需求高等挑战,并提出了相应的解决策略。
69 7
|
28天前
|
机器学习/深度学习 自动驾驶 算法
深度学习在图像识别中的应用
本文将探讨深度学习技术在图像识别领域的应用。我们将介绍深度学习的基本原理,以及如何利用这些原理进行图像识别。我们将通过一个简单的代码示例来演示如何使用深度学习模型进行图像分类。最后,我们将讨论深度学习在图像识别领域的未来发展趋势和挑战。